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ABSTRACT
Today’s decision-making systems rely heavily on machine learning

(ML) models. The ML models are often trained on a biased dataset

and too complex to explain their output leading to discrimination

against a group of individuals. Furthermore, the training dataset

and the model parameters are not publicly available for scrutiny.

This paper presents an overview of the recent techniques that aim

to inspect the black-box models to disparate outcome and present

the probable causes for the discrimination. We explain the core

principles behind the techniques and provide critical analysis of

their effectiveness and shortcomings. We also discuss the future

directions of the application of machine learning and the need for

more comprehensive notions of fairness. This paper emphasizes

the importance of fairness in machine learning and provides an

introduction of the current techniques that the auditors and the

social-welfare organizations can use to test any veiled disparate

impact on the members of the society, and ensure that all of them

are treated equitably.

1 INTRODUCTION
The introduction of machine learning powered systems to make

decisions that affect individuals in society has been steadily rising

over the past decade. The machine learning models are trained on

huge amounts of data that can be collected when you are browsing

the internet [29], walking on the road [20], and evenwhenwatching

TV [28]. The authorities responsible for the data collection use the

data to either gain money by selling them to the third-party data

brokers for advertising or use them to create machine learning

models to gain more insights about their users. However, it is hard

to account for any bias that might be present in the collected data.

And even if the authorities make a conscious effort to de-bias the

data, sometimes it is observable by humans, but the models can

pick them up. The models can introduce bias themselves if their

objective is not defined clearly. Such models exhibit discriminatory

behavior towards an individual or a group of individuals. Some of

the examples include the biased recidivism scores towards black

individuals [2], the use of AI for predictive policing [27], and the

biased performance of facial machine learning services offered by

the cloud providers [38].

Often, the users and the auditors of the model do not have direct

access to them, and they are provided as “out-of-the-box” service

for the users, making it impossible to catch any bias that may have

occurred during the data collection or the model training stage.

Such a setting presents a strong case for developing techniques

that can exploit the input and the outputs of a model to audit for

any potential discrimination, as the auditors could not directly

investigate the model and its parameters. This paper describes

and analyzes three recently proposed approaches that provide a

mechanism to audit models in the black-box setting and present a

report listing the most probable reasons for the disparate impact

One of the earlier attempts to do so was proposed by Tramer et

al. [42] called FairTest. Their efforts divide the user population

into the smaller populations to identify the groups that might be

harmed the most by the model. Gradient Feature Auditing (GFA) is
another proposed technique that constructs an obscured version

of the dataset, which is free of any proxy effects related to the

sensitive attributes. They leverage the concept that the drop in

model accuracy on the obscured version is evidence for unfair

consequences. And finally, we elaborate on the approach proposed

by Black et al. [8] called FlipTest which finds an appropriatemapping

of an individual from one protected class to the other and constructs

a set of individuals for whom the model outcome would change.

The size of the set for which the decision was flipped indicates the

disparity embedded in the model.

Alongwith an extensive overview of the three black-box auditing

techniques, we also underscore the techniques’ similarities and

differences. Even though all the techniques are designed to test for

unfair treatment, they are based on different concepts, applicable

in different settings, and present the probable cause in different

manners. We highlight the strengths of each of the techniques and

draw attention towards the areas where they fall short. We also

discuss the future research directions and the feasibility of such

techniques to broader areas. The rest of the paper is organized as

follows: §2 elaborates on the concepts related to machine learning

and fairness in machine learning that are referred to throughout

this paper; §3 presents an overview of FairTest; §4 explains the

GFA algorithm, §5 analyses FlipTest. We present a comparison and

describe the strengths and the limitations of the techniques in §6

and finally, discuss the need for such techniques and possible future

research directions in §7.

2 PRELIMINARIES
Before we describe the fairness auditing techniques, we want to

introduce some terms and their definitions which would be used

throughout the paper.

2.1 Machine Learning Model
A machine learning model is defined as an algorithm or function

that takes in a dataset in the of rows and columns and outputs

a classification. The model “learns” to output the classification

label using a training set. In a typical machine learning process,

the input data is divided into a training and a testing set. The

model randomly initializes a set of weights of each column in the

dataset and updates them based on a loss function. The weights

or coefficients signify the importance of the column in assigning

a classification label. The process during which the weight get



updated is called model training. Once the training is completed,

the model tests its weights-based output against the test set during

model testing. The difference in the model output and the ground-

truth labels of the test set is used to compute the loss. Once the loss

has reached the desired minimum value, we consider the model to

be trained, freeze the updated weights, and use a new dataset to

“predict” their classification label.

2.2 Sensitive Attributes
A dataset can have multiple columns or attributes. Sometimes, they

are also called features. We use columns, attributes, and features

interchangeably throughout this paper. Each row in the dataset

has a value for each attribute that defines the row based on an

individual’s characteristics. Now, specific attributes are considered

sensitive or protected if the values of the attributes are used to

determine the outcome of a decision, and the decision impacts

the individuals with that attribute value disproportionately. For

example, when considering an application for a house, making a

decision based on an individual is prohibited by law [31].

2.3 Proxy Attributes
Given the definition of sensitive attributes, proxy attributes are
defined as the attributes whose values explicitly do not appear to be

signaling towards an individual’s sensitive attribute, however, they

do exhibit an implicit relationship to the sensitive attributes. Such a

relationship can be caused by historical actions or societal contexts,

which might be visible to the users, and sometimes also by the

model, which is much harder to detect. For example, let’s say we

do not have access to an individual’s race for the house application,

but we know their income and the current postal code. Due to the

redlining, people have been segregated into separate neighborhoods

based on their race in the United States. The information about an

individual’s income and the current postal code can reveal their

race, so income and the current postal code are proxy attributes in

this example.

2.4 Disparity
Disparity or Discrimination is defined as the case when an indi-

vidual’s sensitive attribute or a proxy attribute is responsible for

a different outcome when the values of the remaining attributes

are the same, and the decision-maker, a human or a model, is the

same. For example, if two individuals have the same credit score,

same qualification and same income, but one individual is white

and the another one is black. Imagine both of them are applying

for a house, and if one individual gets it and the other one does not,

then this constitutes as disparity.

The disparity could be broken down into two parts on a granular

level: Disparate Treatment and Disparate Impact. We want to distin-

guish between the two. Disparate Treatment is when the disparity

occurs at the input or model stage of the decision-making process,

i.e., when the decision-maker explicitly takes the individual’s sensi-

tive attributes into account. Disparate Impact is when the disparity

occurs at the outcome stage of the decision-making process, and

it arises when the relationship between the sensitive and proxy

variables is not explicitly observable. However, the model can to

leverage it, and its outcome disproportionately impacts one group

of individuals [25]. The remedy for disparate treatment is often

called Equality, and that for disparate impact is called Equity.

3 FAIRTEST
3.1 Motivation
More and more applications used today collect the personal infor-

mation on their users. Some of this data is used to sell for first-party

or third-party advertising, and some of the data is used to train ma-

chine learning (ML) models for a prediction task. The data collected

in such a manner is not free of bias, and there are cases when such

a model has led to harmful and discriminatory behavior against

a certain set of its users [21, 41]. For example, Staples deployed

a variable pricing algorithm for its online buying users to attract

more customers. However, the algorithm was later found to be dis-

criminating against people living in lower-income neighborhoods

by showing them higher prices. The company called the situation

an “unintended consequence” of their algorithm. The authors of the

paper [42] intend to tackle such problems by considering them as

bugs and providing the developers of such models with a debugging

tool. They term such bugs as unwarranted associations.
Although a general way to indicate an unwarranted associa-

tion would be the presence of strong statistical dependency of an

algorithm output on the protected class, the authors find such a

definition to be fuzzy. It lacks in outlining wide-scope applicability,

a method to provide scalable assessment, and including any natural

explanatory factors to justify the perceived bias. Therefore, they in-

formally define unwarranted associations as any strong associations
between the algorithm output and the attributes of a protected user

group, where the associations arise in a meaningful subset of users,

have no explanatory factors, and can be used in a testing toolkit

for wide-variety of tasks and datasets.

The authors use the definition of unwarranted associations to

provide a framework called unwarranted associations (UA) frame-
work to discover and analyze association bugs at the data collection
stage of an ML pipeline, identify a semantically meaningful subpop-
ulation that is affected, provide any explanatory factors, allow se-

lecting the suitable statistical measures to support the bug discovery,
and providing a debugging mechanism to the users. They package

the proposed UA framework into a testing toolkit, which is called

FairTest testing toolkit. The debugging applications of FairTest in-
volve creating a digestible debug report for more in-depth inspec-

tions related to the association bugs. To substantiate the harm of

association bugs, FairTest employs a decision-tree based approach

named association-guided tree construction that splits the user space

into subgroups to observe the effects of decreased population size

and increased unwarranted association. The proposed approaches

are evaluated over a diverse set of tasks and experiments. They

also provide a publicly available
1
implementation of the FairTest

framework.

3.2 Approach
This section describes the proposed methodology in two parts.

First, we begin by exploring the conceptual UA framework, and

1
https://github.com/columbia/fairtest
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then we go over the details of the core components of the FairTest

architecture based on the UA framework.

3.2.1 The UA Framework. The authors define an unwarranted asso-
ciation as any statistically significant association, in a semantically

meaningful user subpopulation, between a protected attribute and

an algorithmic output, where the association has no accompany-

ing explanatory factor. They claim that a benefit of such a flexible

definition over a mathematical expression is the ability to apply

and extend it to broad areas, some of which could not be expressed

in terms of mathematical relationships. Moreover, the statistical

association encapsulates any relationship between two quantifiable

entities such that they are statistically dependent.

Consider an algorithm that uses the data collected on the users,

including sensitive features like location or age. The output of the

algorithm that needs to be inspected is denoted asO . The accuracy

ofO could have different user utility depending on the task. The

attributes of the dataset can be characterized into three categories.

(1) Protected attributes, denoted as S , are the primary attributes

along which discrimination can occur. Typically, a group

of individuals with certain S values constitutes a sensitive

group and is protected by the law and policies.

(2) Contextual attributes, denoted as X , are the attributes along

which a population can be split to highlight hidden unwar-

ranted associations. X is usually a proxy attribute for S that

can be directly used by the algorithm and unwittingly reveal

S’s values to the algorithm.

(3) Explanatory attributes, denoted as E, are the attributes whose
values can justify a seemingly discriminatory behavior by

the algorithm.

The categorization of S , X , and E is subjective to the task and is

independent of the operations of the UA framework. The subjec-

tiveness of the attributes can be explained by considering a hiring

decision as an example. A company would want to hire candidates

with more experience, even though, more experience can be a proxy

for a candidate’s age or gender.

Based on the values thatO and S can take, the authors classify

the choice of metrics that can be used to assess the strength of the

association betweenO and S below:

• Frequency Distribution Metrics: When O and S are binary

attributes, they can be written as O = {o1,o2} and S =
{s1, s2}. The ratio metric is defined as Pr(o1 |s1)/Pr(o2 |s2) − 1,

and the difference metric is given as Pr(o1 |s1)−Pr(o2 |s2). They
are often useful when examining the algorithm output for

unwarranted associations.

• Mutual Information: When the values of O and S are non-

binary, inspired by information theory, the authors suggest

leveraging the notion of mutual information (MI), given by∑
o,s Pr(o, s) ln(

Pr(o,s)
Pr(o)Pr(s) ). The normalized MI (NMI) can be

computed by dividing the measure by the minimum of Shan-

non entropies ofO and S . They are also used when testing

for associations betweenO and S .
• Correlation: Although MI works well for the continuous val-

ues ofO and S , it is expensive to compute. The authors turn

to Pearson’s correlation to quantify the relationship between

O and S , when they are linearly dependent. It is used when

the users want to profile the algorithm for errors.

• Regression: Regression is employed when the outputs of the

algorithm are not known a priori or when the domain of

output values is very large. The regression coefficient for
each output value can provide evidence for the strength of

association.

• Conditional Metric: It is used when looking for explana-

tory factors for a possible unwarranted association. For any

given association metric,M(S ;O) and explanatory attribute

E, the conditional association is given as the expectation,

EE (M(S ;O)|E).

The authors point out that looking for associations across the

full user population is not useful, as discrimination takes place in

specific user groups. Therefore, they need to search for smaller

but meaningful subpopulation that exhibits higher association. The

framework uses association-guided tree construction to accomplish

this, whose details are given later. And finally, since the associations

can be justified in the presence of explanatory factors, discovering

the association bugs is not a one-shot process. The framework is de-

signed for multiple subsequent inspections, supported by statistical

validity.

The core investigation primitives of the framework can be sum-

marized as:

Testing: The users of the framework should be able to test

for any suspected association between the algorithm out-

puts and protected attributes, in the presence of explanatory

attributes.

Discovery: The framework should allow for the identification

of algorithm outputs even when their values are not known

a priori. This primitive is valuable when dealing with a large

space of output values.

Error Profiling: The utility of an algorithmic output is depen-

dent on how many times it is accurate for a subgroup. If

an algorithm is more frequently accurate for one subgroup,

compared to the other, it may be discriminating against a

subgroup. The UA framework’s compatibility with multiple

metrics to measure the association make it capable of error

profiling.

3.2.2 The FairTest Design. The authors preface the details of the
FairTest architecture, by providing an example of the association
report that simulates the Staples’ pricing algorithm by giving dis-

counts to customers who live within 20 miles radius of a competing

store. As shown in Figure 1, the report highlights the statistically sig-

nificant associations between the protected attribute of income and
the algorithm output, price. For each population size, NMI is used
to express the strength of the association, and the contingency table
for output values and contextual attributes shows the frequency

distribution. We observe that the global population does not expe-

rience a difference in the percentage of people shown a high price,

and the NMI values are low. As we zoom into the subpopulation

of white individuals living in California (CA), we notice that 8%

of low-income individuals are offered high-price. In contrast, only

4% of the high-income individuals are offered high-price. Similarly,

when looking at black male individuals living in New York (NY), 4%

of low-income individuals were advertised high-price compared to
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Figure 1: A sample association report on Staples’s simulated
pricing algorithm, taken from [42].

only 1% of high-income individuals. The sample association report

provides clear insights into the discrimination against subgroups

and could flag the behavior before a biased algorithm is deployed

in-the-wild.

Figure 2: Architecture components for the FairTest illustrat-
ing the user inputs, compute mechanisms, and association
report as the output. The image is taken from [42].

Figure 2 shows the architecture of FairTest, consisting of four

major components, namely Association Metrics, Association Context
Discovery, Statistical Validation and Ranking, and Dataset Manage-
ment. Each of the components could be described as:

• The input to FairTest is a dataset, denoted asD = {(S,X , E,O)}

that is split into a training set Dtrain and a test set Dtest.

• The Association Metric is the module that is responsible for

computing the association metrics described in §3.2.1.

• The Association Context Discovery module splits Dtrain for

each Si ∈ S to create meaningful subpopulation groups,

based on X , with the objective to maximize the association

between Si and O .
• For each subpopulation, Statistical Validation and Ranking
module validates the bug on Dtest using appropriate test

statistic.

• Dataset Management module is responsible for managing

copies of the test set to ensure the validity of statistical tests

across multiple investigations.

The Association Context Discovery is driven by a heuristic par-

titioning technique called guided decision-tree construction. The
algorithm is inspired by the way decision-trees work for classifi-

cation. In this algorithm, Xi ∈ X is chosen as the root node along

which the dataset D is split into smaller sets, D = {D1,D2, ...}. The

number of splits depends on the valuesXi can take. IfXi is categor-

ical,D is split along each unique value ofXi . IfXi is continuous, the

authors choose a threshold t along which binary splits are created,

D = {D1,D2}, such that Xi < t for all rows in D1. Threshold t is
chosen based on testing the unique values of Xi that maximizes

the association in the two splits. A valid split is characterized by

at least one of the resulting subpopulation Di showing a higher

association than the current population D.
Statistical Validation and Ranking are an important component

of FairTest as the objective of the Association Context Discovery

module is to maximize the associations over a finite population,

Dtrain. Therefore, an independent test set, Dtest is required to val-

idate the association bugs. The module employs p-value tests for
hypothesis testing and confidence intervals for association metrics.

Since with each iteration, the train set is split into smaller sub-

population, FairTest needs to “track” such changes in the test set as

well to validate the hypothesis across multiple investigations. To

this end, FairTest takes a budget B as a user input along with the

dataset at the beginning, so that FairTest can keep B test sets aside,

one for each investigation.

3.3 Evaluation
The evaluation of FairTest attempts to answer the following three

questions:

Q1 Is FairTest effective at detecting association bugs?

Q2 Is it fast enough to be practical?

Q3 Is it useful to identify and debug association bugs in a

variety of applications?

3.3.1 Detective Effectiveness (Q1). The authors generate around
1M synthetic users using the US Census [9] for gender, income,

and race. They begin by using a fair algorithm that assigns an

output of {0, 1} to individuals, without considering the income.

Then, they introduce disparity in subpopulations, such that income

level is related to a difference in output proportions of size 2∆. As an
example, if the value of ∆ = 10%, the algorithm assigns 1 to 60% of

the high-income individuals and 40% of the low-income individuals,

among the white users living in California. They evaluate FairTest

for different ∆ values and population sizes. Their findings show that

FairTest can detect disparities even for the low value of ∆ = 2.5%

in larger contexts and the high value of ∆ = 15% in the context of

a few hundred users. They also run FairTest on a set of simulated
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and real-world datasets [7, 12, 13, 19, 35] and report the association

bugs discovered. The detection of discrimination in the context of

different population sizes appear to be accurate, but since there is

no ground-truth for the datasets, the results are left to be further

investigated by the domain experts.

3.3.2 Performance (Q2). The authors conduct runtime tests on all

the datasets using a modern laptop, and they find that the total time

taken ranges from 1-5 seconds for the smallest datasets to 60 sec-

onds for the largest datasets (∼1M individuals). They also compare

FairTest to an approach like brute-force suggested by Pedreschi et

al. [34]. Since the brute-force approach would generate exponen-

tially large subpopulation size, they are limited by the number of

smallest and largest subpopulation sizes created by FairTest. They

used the Adult Census data [13] with protected attribute gender
and target attribute income. Their findings show that both the ap-

proaches find a similar association, but FairTest does that with 4×

to 8× less potential contexts.

Figure 3: Association Report on the Berkeley graduate ad-
missions dataset generated when investigating with the ex-
planatory attribute, E = Department. The image is taken
from [42].

3.3.3 Investigation Experience (Q3). In this section, we show the

evaluation of FairTest on the Berkeley graduate admissions dataset [7].

We direct the user to the full paper [42] for the insights gained by

experiments on the other real-world datasets. As shown in Figure 3,

the initial investigations on the complete dataset disclose disparate

impact, where only 32% of female applicants get admitted, whereas,

48% of male applicants are granted admission. The authors then

define department as an explanatory attribute that tells FairTest

to look for associations only within the applicants of a department.

When looking at applicants in Department A, it is evident that the
department has much higher admission rates for female applicants.

The trend is also exhibited in Department B. This trent is called

Simpson’s Paradox when the effects exhibited by the overall pop-

ulation are different and sometimes opposite to that exhibited by

smaller population.

4 GRADIENT FEATURE AUDITING
4.1 Motivation
Many machine learning services are available today as black-boxes,

in the form of an application programming interface (API) both for

individual and enterprise purposes. In such an environment, a user’s

interaction is limited to sending the inputs to the model and getting

back the prediction outcome. Since the model-building processes

are opaque to the user, it is not only hard to detect any bias in

the model, but it is also impossible to retrain the model to rectify

them. Adler et al. [1] propose a Gradient Feature Auditing (GFA)

algorithm to identify the indirect influence of proxy variables in the

decision the outcome of a black-box model. The indirect influence,
as opposed to the direct influence, is termed as the influence of a

non-sensitive attribute on the model outcome that is not classified

as sensitive alone, but has a veiled relationship to the sensitive

attribute. For example, when deciding to hire a candidate for a

job, we do not want the sensitive attribute, gender to have a direct
influence on our decision, however, height can cause an indirect
influence, which can be linked back to the candidate’s gender.

To study the indirect influence of proxy attributes, the authors

suggest creating a modified dataset with minimal indirect influence

and observing the black-box models’ performance. A naive way to

create the modified dataset would be to add random perturbations

to the features, but doing so can affect the model performance

arbitrarily and result in loss of information important to the model’s

outcome. The authors propose a deterministic approach to obscure

the indirect influence attributes, while preserving the task-specific

signals in the dataset. The contributions of this work can be listed

as:

• An algorithm to construct a modified dataset with obscured

indirect influence, with theoretical support.

• Formal definition of indirect influence in terms of black-box

model outcomes.

• Evaluation of the approach on multiple publicly available

datasets.

4.2 Approach
Consider a black-box classifier, f : X → Y, where X is a d-
dimensional feature space and Y = {−1, 1} for binary classification.

A dataset drawn from the feature spaces can be denoted as (X ,Y ),
where the i-th coordinate of X is a vector, Xi = (xi1, xi2, ..., xid ),
such that xi j ∈ Xj , 1 ≤ j ≤ d . Given the notations, the accuracy of

the model is given as:

acc(X ,Y , f ) =
1

n

∑
1yi,f (Xi ) (1)

And, the lp norm is defined as:

| |x | |p = (

d∑
i=1

|xi |
p )1/p ) (2)
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Now, in order to measure the indirect influence of a feature j
quantitatively, we would introduce perturbations to the values of

xi j ,∀i ∈ Xi . We call the new dataset with the perturbed values,

X−j , and now we calculate the difference between acc(X ,Y , f )
and acc(X−j ,Y , f ) to get the indirect influence of j on the model

outcome.

If the perturbations are introduced randomly, they can cause a

two-fold adverse effect on the model evaluation. First, it can take

away any useful information present in the feature that might be

crucial for the model outcome. Second, it does not quantify the

feature’s proxy effects in a clear relationship to the outcome. On

the contrary, the authors’ method adds directed and deterministic

perturbations to the feature which overcomes the problems with

random perturbations. The modifications should be minimal such

that they obscure the information to prevent predicting the values

of feature j using the remaining features, thereby removing j from
the dataset and obscuring its influence on X .

4.2.1 Notations. To test the feature predictability, the authors sug-

gest using the balanced error rate as it is more robust against the

class imbalance than the standard misclassification rate. The bal-
anced error rate, BER of f on (X ,Y ) is defined as:

BER(X ,Y , f ) =
1

|supp(y)|

©«
∑

j ∈supp(y)

∑
yi=j 1f (Xi ),j

|{i |yi = j}|

ª®¬ (3)

where supp(Y ) = y ∈ Y|y ∈ Y is the set of elements of Y appear-

ing in the dataset. Given the predictability measure, we want to

provide the notation for the obscurity of a feature, where a feature

is obscured if it can not be predicted using the remaining features.

We define the ϵ-obscure version of X with respect to the feature

space Xi , as X \ϵ Xi . This can mathematically be written as:

BER(X \ϵ Xi ,X
(i), f ) > ϵ (4)

where X (i)) is a feature drawn from Xi . The definition of obscu-

rity has been derived from one of the earlier works in [14]. And

finally, we need a notation for the indirect influence of a feature.

Indirect influence, I I is defined in terms of the difference in model

accuracies on the original and the modified dataset. It is given as:

II(i) = acc(X ,Y , f ) − acc(X \ϵ Xi ,Y , f ) (5)

4.2.2 GFA Algorithm. After stating the notations, we now describe

the authors’ algorithm called Gradient Feature Auditing (GFA) to
compute the indirect influence of a feature. Let us consider O = Xi
as a categorical feature that needs to be removed from the dataset,

and another featureW = Xj that is numerical and needs to be

obscured. The marginal probability distribution ofW conditioned

on O = x can be written asWx = Pr(W |O = x) and the cumulative

distribution is given as Fx (w) = Pr(W ≥ w |O = x). The algorithm
is designed in a way that it works feature by feature, by obscuring

the influence of one feature at a time.

The authors define a median distribution A with the cumula-

tive distribution is given as FA and it’s inverse function F−1A =

medianx ∈O F
−1
x (u), where F−1A is also known as the quantile func-

tion. Inspired by the work in [14], they suggest that modifying

the distribution of the feature being obscured,W , to the median

distribution A changesW minimally and obscures the influence

of O onW maximally. The modification is achieved by changing

the values ofW to mimic the median distribution, A, such that

Ŵ = F−1A (Fx (w)),∀w ∈W , where Ŵ is the modified version ofW .

They argue that A also minimizes the earth-mover distance [39],

d(., .) in
∑
x ∈O d(Wx ,A) between the two distributions using l2

distance d(p,q) = | |p − q | |2 as the base metric.

In the description of the algorithm above, the authors assumed

that theW is numerical andO is categorical. They elaborate on how

does the algorithm work whenO is numerical, andW is categorical.

For the first case, they suggest removing the higher-order bits of the

numerical values and using the lower order bits to bin the numerical

feature, and then the rest of the algorithm would work as described

before, substituting bins as categorical features. The second case

is when the feature to obscure is categorical, making it infeasible

to compute the cumulative distributions that are crucial to the

algorithm. They introduce the exact metric 1 such that 1(x,w) =

1 ⇐⇒ x = w . Like in the algorithm stated earlier, the exact

metric is used as the base metric to define A as the distribution that

minimizes the distance function

∑
x ∈o d(Wx ,A). If we have two

distributions p and q, then the earthmover distance between them

using the exact metric 1 is given as d(p,q) = | |p − 1| |1 using the

l1 norm. The minimizing distribution A in this case, can be found

taking a component-wise median for each valuew ∈W and can be

written as pA(w) = medianwWx (w). The obscured, but minimally

modified version Ŵ can be computed by using the minimum cost

flow solution over the earthmover distance between eachWx and

A.
The algorithm also provides a 0-1 scale of obscurity for the

features where 0 represents an unchanged dataset, and 1 repre-

sents complete obscurity. It is important to provide such a scale

as sometimes complete removal of the attributes can render the

model useless, and by allowing partial obscurity, we can explore

the fairness-utility tradeoff.

4.3 Evaluation
The authors perform an extensive evaluation of their proposed

approach on multiple combinations of datasets and models they

trained to treat as black-boxes. Once they have trained the models

using the original dataset, they do not retrain the models but only

use the modified datasets to observe the change in model accura-

cies. The code and the datasets used in the evaluation are publicly

available
2
.

4.3.1 Datasets andModels. They create a two-class Synthetic dataset
with 6,000 items and five features distributed equally to each class.

They create a feature (P ) that encodes the row number, and two

features (Q and R) are multiples of this feature. They also add a

random and constant feature.

They use the Adult Income and German Credit dataset from the

UCI Machine Learning Repository [13]. The Adult Income dataset

contains 48,842 people, and 14 US Census attributes with a binary

classification for each individual if they make more or less than

$50K per year. The German Credit dataset contains data for 1,000

2
https://github.com/algofairness/BlackBoxAuditing
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people and 20 attributes with a binary classification for good or

bad credit score.

And finally, they use the Dark Reaction dataset consisting 3,955

experiments, 273 attributes, and the classification attribute is indi-

cating the successful production of an ionic crystal.

The authors train multiple models on all the datasets that include

SVMs [11], feedforward neural networks (FNNs) [15], C4.5 decision

trees [36].

4.3.2 Auditing White-box vs. Black-box Models. In a black-box set-

ting, we can not retrain the model with the obscured dataset. How-

ever, the black-box model could have been trained on a dataset, in

presence of a sensitive attribute O . The authors claim that after

the attributeW is obscured with respect to O , the modified dataset

has no information related to O . Therefore, even if the model was

originally trained with O , there is no information related to O in

the test data that can be leveraged to make the decision. To val-

idate this claim, they use the synthetic dataset and use decision

tree and SVM models. For one case, they do retrain the model after

obscuring each feature, and for the other case, they do not retrain

the model, but only test the model accuracy on the obscured test

data. They observe that the relative drop in the model accuracies

was very close for both the cases, which validates their claim. They

also observe that in the case of decision trees, when the model is

fixed and the root split node is P , obscuring the values of Q and R
do not affect the data relative to the split feature instantly. On the

other hand, when the model is retrained on the obscured feature

dataset, and it can change the split node feature based on the new

information in the obscured dataset.

4.3.3 Black-box Feature Auditing. Now the authors evaluate their

GFA algorithm on all the models and all the datasets. They start

with the original dataset and increase the partial obscurity in 0.1

intervals, all the way till it reaches the value of 1, which is complete

obscurity.

While running the experiment on the synthetic dataset, obscuring
any of the encoding features (P ,Q , or R) reduces the model accuracy

to 50%. Although obscuring the constant feature does not affect the

model performance, obscuring the random feature suffers from a

slight drop as the random feature also uniquely identifies each row.

Based on the definition of indirect influence in Equation 5, the

feature’s importance to the model is directly related to the drop in

model accuracy. In the experiments on the Adult Income dataset,
they find that age was one of the most important features for SVM

and FNN models, but less important for the decision tree model.

They also note that counter to the intuition race is the least impor-

tant feature. The results show that obscuring some of the features

on the FNN model increases the model accuracy, which the authors

attribute to the reduction in noise for a suboptimal model. They no-

tice a similar but more pronounced noisy behavior on the German
Credit dataset. On the contrary, the important features highlighted

in the experiments are infact the most discerning features for the re-

action outcome. The outcome is similar for SVM, FNN, and decision

tree models and is corroborated by [37].

4.3.4 Auditing for Consistency. The authors want to investigate the
noisy model accuracy results on German Credit and Adult Income
datasets. To this end, they define model consistency as the change

in the model accuracy with the increasing obscurity relative to the

predicted label, rather than the original label. In other words, they

replace the original class label with the model predicted label and

calculate the difference in the accuracy. Therefore, they begin a

100% consistency and observe the decrease in the consistency with

respect to the obscurity of each feature, which gives them insight

into the feature importance and makes the findings independent

of a suboptimal (overfitted) model. They note a fairly smooth drop

in the consistency with slight noise for categorical features. They

find credit amount, checking status, and existing credits
as the top-ranked features across all models. They run a similar

experiment on the Adult Income dataset with the FNN model. The

results show that the top and bottommost feature ranks do not

change, but features like occupation and marital.status are ranked
higher in the consistency ranking.

5 FLIPTEST
5.1 Motivation
The classic approach to measure group fairness is using metrics

like demographic parity [4] and equalized odds [18]. However, the

approach fails to capture the discriminatory behavior towards indi-

viduals [10, 22] or even subgroups [26]. To study the discrimination

at an individual level, prior work [16] have proposed changing

the individual protected class. Although this process prevents the

use of protected attributes directly, the attributes correlated with

the protected attributes could still be a cause of harm. A more nu-

anced approach is suggested by Kusner et al. in [24]. They study

the causal relationship with the protected attribute leading to a

more granular understanding of the model discrimination against

individuals. Nonetheless, the disparate impact can arise in the ab-

sence of such a causal relationship as well. Black et al. [8] propose

another black-box fairness testing approach called FlipTest that has
similar applications to Adler et al.’s approach [1] as elaborated in

section 4.

FlipTest is a comprehesive and interpretable technique motivated

by the question: had an individual been of a different protected status,
would the model have treated them differently? FlipTest leverages op-
timal transport mapping [43] to transform the distribution between

protected class labels and observe the shift in the model outcome. A

change in model outcome indicates discrimination based on the pro-

tected attribute. The authors also highlight that the mapping does

not depend on causal relationships to capture the discrimination

caused at the outcome stage without considering any assumptions

about the underlying data. Computing an optimal transport map is

computationally expensive, and the cost grows with the increase

in the size and dimensions of the dataset. To that end, the authors

also introduce and validate a faster and efficient approximation

method to compute optimal transport maps using Generative Ad-

versarial Networks (GANs) [17]. The model output is assumed to be

binary, positive and negative, and the results of optimal transport

map from one class to the other are termed as flipsets. The authors
create a transparency report that highlights the differences between
the flipsets and provides an insight into what features might be

responsible for the discrimination. Finally, FlipTest is a framework

to examine a machine learning model for discriminatory behavior

towards the protected groups. It can assist the well-intentioned
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model creators and the external auditors who do not have direct

access to the model.

5.2 Approach
Before describing their approach, the authors draw our attention to

an example to show the applications of flipsets in action. They use

a synthetic dataset created in [26], containing two features - hair

length and work experience, and a classification label on whether

the candidate was hired or not. They emphasize that flipping the

gender attribute is not sufficient to study any discriminatory be-

havior as the model can learn the original protected attribute using

the information present in the proxy attributes. Instead, for each

female in the dataset, they need to find an appropriate map in the

male category and vice versa, such that the mapped counterpart
also accounts for the shift in the remaining attribute values. For

example, due to the historical trend in the dataset for male can-

didates, a female candidate with no experience could be mapped

to her male counterpart with two years of experience. Also, the

decision of not hiring a female candidate with no experience might

be based more on the work experience rather than the gender itself.

This example persuades us to think about how disparate treatment
might not always be a cause for disparate impact.

5.2.1 Optimal Transport Mapping. The authors then introduce the

notation used throughout this section of the paper. Consider the

two distributions S and S′
for two classes over the feature spaceX.

Let n be the number of samples drawn from these two distributions,

such that the set S = {x1, ..., xn } and set S ′ = {x ′
1
, ..., x ′n }, where

n = |S | = |S ′ |. Although the two sets are of equal size here, it is not a
hard requirement for the proposed approximation method. The cost

function is defined as c : X × X → [0,∞], such that c(x, x ′) denotes
the cost of moving a point from S to S ′. An optimal transport map

accomplishes moving between two points by minimizing the cost

function. It is given as a bijection f : S → S ′ such that the expected

cost is minimized:

E[c(x, f (x))] =
1

n

n∑
i=1

c(xi , f (xi )) (6)

The existing methods of solving optimal transport map like

Hungarian algorithm [23] do not scale well for large values of n.
Therefore, the authors propose using a GAN to find robust approxi-

mations for computing the optimal transport map. The authors use

the implementation ofWasserstein GAN (WGAN) provided in [3] to

train a generator G to learn the optimal transport mapping. While

training, the generator’s loss function is given as
1

n
∑
x ∈S D(G(x)),

where D denotes the discriminator. The loss function for the dis-

criminator D is written as
1

n
∑
x ′∈S ′ D(x

′)− 1

n
∑
x ∈S D(G(x)). They

modify the generator’s loss function to include the cost function

specified in Equation 6 and the new generator cost function is given

as:

LG =
1

n

∑
x ∈S

D(G(x)) +
λ

n

∑
x ∈S

c(x,G(x)) (7)

λ here is the parameter to control the relative importance of the

cost function. The authors provide the following proposition to

motivate the use of generator G to compute optimal transport.

Proposition 1. Suppose that G∗ is a minimizer of LG among all
G such that G(S) = S ′. If λ > 0, G∗ is an exact optimal transport
mapping from S to S ′.

The proof for the proposition is provided in the supplementary

material of [8]. The authors then conduct experiments to show

the stability of the GAN approximated mapping over the exact

mapping.

Consider a fixed point x ∈ S , n − 1 other points randomly drawn

from the distribution S , and n points randomly drawn from the

distribution S ′. They repeat the random draw multiple times to get

different sets S and S ′ each time and study the variance of the point

f (x). They use the square of the L1 distance as the cost function.
The linear optimal transport mapping is implemented in Python 3

and WGAN is implemented using Keras
3
, a Python library with the

Tensorflow
4
backend. To measure the stability, they want to map

the distribution to itself. For the first set of experiments, they set x to

one vector and calculate the mean of f (x). Because f (x) is mapped

to the same distribution as x , over multiple iterations, f should be

equivalent to the identity function, and the mean of f (x) should be

close to x . The authors indeed observe the expected effect for GAN

approximation, but they also observe a significant increase in the

size of the linear program as the number of dimensions increased

in the feature space. In the second set of experiments, they set x to

be the zero vector, and just like in the first set of experiments, they

study the variance of f (x). They find the variance of f (x) remains

low and more stable using the GAN approximation compared to

the exact mapping and another method suggested by Seguy et al.

in [40].

5.2.2 Flipsets and Transparency Reports. The authors describeflipsets
as the sets of individuals whose outcome changes for their mapped

counterparts. A formal definition is given as:

Definition 1 (Flipset). Let h : X → {0, 1} be a classifier and
G : S → S′ be an optimal transport mapping (or an approximation).
The flipset F (h,G) is the set of points in S whose mapping into S′

under G changes classification.

F (h,G) = {x ∈ S | h(x) , h(G(x))} (8)

The positive and negative partitions of F (h,G) are denoted by
F+(h,G) and F−(h,G).

F+(h,G) = {x ∈ S | h(x) > h(G(x))}

F−(h,G) = {x ∈ S | h(x) < h(G(x))}

For a better understanding, the authors use an example where S

denotes the female candidates, and S′
denotes the male candidates,

and h is the binary decision function whose output determines

if the candidate should be hired or not. Then F+(h,G) would be

the set of female candidates who are hired, but their mapped male

3
https://keras.io/

4
https://www.tensorflow.org/
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counterparts are not. Similarly, F−(h,G) would be the female can-

didates who are not hired, but their male counterparts are hired.

Conversely, the mapping could be reversed to become G ′
: S ′ → S

to generate male flipsets.

In an ideal scenario, when the input data is independent of any

information about the protected attributes, the distributions S and

S′
would be equal, G would become an identity function, and the

positive and negative flipsets would be empty. On the other hand,

if the two flipsets are nonempty but of equal size, it can indicate de-

mographic parity but does not necessarily mean individual fairness.

Proposition 2 elaborates on this phenomenon:

Proposition 2. Let h be a binary classification and G : S →

S ′ with |S | = |S ′ |, be the exact optimal transport mapping. Then,
|F+(h,G)| = |F−(h,G)| if and only if the model satisfies demographic
parity on the observed points, i.e.,

|{x ∈ S | h(x) = 1}| = |{x ′ ∈ S ′ | h(x ′) = 1}|

The proof for the proposition is again provided in the supple-

mentary material of [8].

Finally, the authors define transparency reports as the set of

features that experience the highest amount of change between the

members of a flipset under G. It is formally stated as:

Definition 2 (Transparency Report). Let h : X → {0, 1}

be a classifier, G : S → S′ be an optimal transport mapping (or
an approximation), and F (h,G) be the corresponding flipset. If X ⊆

Rd , we can compute the following vectors, each of whose coordinate
corresponds to a feature in X:

1

|F⋆(h,G)|

∑
x ∈F⋆(h,G)

x −G(x),and

1

|F⋆(h,G)|

∑
x ∈F⋆(h,G)

siдn(x −G(x))

Here, ⋆ ∈ {+,−}. Together, these vectors define a transparency
report, which consists of two rankings of the features inX, each sorted
by the absolute values of each coordinate.

The highest-ranked features are responsible for the highest

amount of difference in the model outcome on the flipset.

5.3 Evaluation
In this subsection, we go over the authors’ evaluation of their ap-

proach using real and synthetic datasets. They begin by showing

experiments that entrench the use of GAN approximation for the

optimal transport mapping. Then they conduct case studies on

two datasets - Chicago Strategic Subject List (SSL) [30] and the

candidate hiring dataset created in [26].

5.3.1 GAN Validation. The authors train a GAN on the samples

from two identical distributions. They state that as the number of

training samples increases, the size of the flipsets gets closer to

zero. Since the GAN generator is supposed to learn and generate

the data close to the training samples, this experiment provides an

empirical bound on the number of flipsets that may arise due to

the noise in the GAN approximation. To compensate for mapping

the distribution itself, they add random features dependent on the

protected attribute to simulate close to in-the-wild GAN training

behavior. To this end, they draw 10,000 samples from each distri-

bution S and S ′ and train a complex SVM model with RBF kernel

over random labels. Even though these measures are introduced as

a way to increase the flipsets, the size of the flipsets remains as low

as 3% of the dataset size, which helps establish a lower threshold

for experiments described further.

The authors conduct another experiment to validate GAN ap-

proximation. They create a dataset with 2,000 members (x ∈ S ′)
and compute the optimal transport map using the exact method

(f (x)) and the GAN approximation method (G(x)). They calcu-

late the square of L1 distance between x and f (x) and compare

it to that between x and G(x). Furthermore, they employ Kol-

mogorov–Smirnov(KS) statistic between S ′ and G(S). And finally,

they train linear regression models over the real target data S ′ to
predict each feature from the remaining ones. The mean squared

error between the regression model output and G(S) provides a
measure of how well the GAN captures the feature correlation. The

results of the all the experiments provide evidence for the validation

of the proposed GAN approximation approach.

5.3.2 Testing a Biased Model. The authors use the SSL dataset [30]

that contains records of arrested individuals having attributes like:

the age during the arrest, number of prior arrests for violent of-

fenses, number of prior narcotic arrests, gang affiliation, number of

times as a victim of a shooting incident. The classification attribute

is a score on the scale of 0 (low) to 500 (high) based on the likelihood

of the individual being involved in a shooting incident either as

a victim or an offender. Since prior work [44] has shown that the

models trained on this dataset do not exhibit discriminatory behav-

ior, the authors introduce bias in the model by giving more weight

to the attribute of the number of prior narcotic arrests, which is

correlated with the individual’s race, and is less predictive than the

other attributes. The final model classifies an individual as high

risk if the individual satisfies −53 · aдe + 25 · narc > 65, which

disparately assigns high-risk scores to black individuals.

Of the 3,683 high-risk black individuals classified by the model,

the positive flipset F+(h,G) has a size of 1,290 black individuals

whose white counterparts are classified as low-risk. On the contrary,

out of 37,877 black individuals that low risks, the negative flipset

F−(h,G) consists of only four white counterparts who are classified
as high-risk. Based on the size of the flipsets, it is evident that the

model discriminates based on race, which is a part of the model

design.

To look at themodel outcomes from the lens of subgroup fairness,

the authors use the histograms of the marginal distribution of the

features in the flipset and compare them to themarginal distribution

of the entire black population in the dataset. The normalized feature

values for age are lower and higher for narcotic arrests in the flipsets

than the full black population, reflecting the introduced model bias.

Conversely, the marginals for gang affiliation did not show any

difference, which was not weighed by the model. For a granular

analysis, they turn to the transparency report to gain insight into

which features are responsible for the discrimination. The feature

that exhibits the most change in F+(h,G) is narcotic arrests, which
again consistent with the introduced bias in the model.
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Now, the authors investigate the use of optimal transport map-

ping towards the application in fairness notion of equalized odds.

Equalized odds states that the model outcome is independent of

the protected attribute given the ground-truth. To that end, they

train two optimal transport maps: one to map black ground-truth

negatives to white ground-truth negatives and the other one to

map black ground-truth positives to white ground-truth positives.

For the ground-truth negatives, F+(h,G) comprises 499 individ-

uals mapped from 5,002 black ground-truth negative individuals

predicted high-risk by the model. On the other hand, F−(h,G) is
an empty set. The histogram analysis of the F+(h,G) highlights
the lower age and higher narcotics arrest compared to the rest of

the black population. The transparency report corroborates these

findings. For the ground-truth positives, the fliptest F+(h,G) has
261 individual members out of 1,568 black ground-truth positive

individuals whose model outcome was high-risk. F−(h,G) contains
102 individuals out of 3,767 black ground-truth positive individ-

uals predicted as low-risk. The findings are similar to that of the

ground-truth negatives.

5.3.3 Testing a Group-Fair Model. The authors train an algorithm

suggested by Zafar et al. [45] on the synthetic dataset created by

Lipton et al. [26] that contains hair length and work experience as

candidate features, with the classification attribute gesturing the

decision to hire the candidate or not. In their study, Lipton et al.

find out that the algorithm designed to equalize the hiring rates

across the protected attribute, gender in this case, results in a linear

model that uses hair length as proxy attribute and overcorrects by

benefitting long-haired men and harm short-haired women. The

authors of the FlipTest paper recreate the linear model and trained

it over 10,000 individuals, each belonging to the male and female

protected groups. The model outcome generates nearly identical

hiring rates of 27% and 30% for male and female groups, respectively.

Looking closely at the flipsets, they notice the individuals that are

being discriminated against. When mapped to male individuals,

715 female individuals are rejected, while 1,215 males mapped to

female individuals are hired. The transparency report confirms

the findings in [26] that state that the model benefits feminine

characteristics, longer hair-length in this case, to equalize the hiring

rates. The disadvantaged women have short hair and a lot less

experience compared to the advantaged women, who have long

hair and slightly less experience.

6 COMPARISON
In this section, we present an extensive comparison of all the three

approaches covered in §3, §4, and §5. The techniques provide a way

to test for the fairness criteria of an ML model or an algorithm,

which is why all of them are post-processing techniques. To elabo-

rate, all the techniques require the output of the model, which is

then used to infer a direct or indirect relationship with sensitive at-

tributes. In most cases, the model does not directly use the sensitive

attributes to make a decision, and in some cases, it is prohibited by

the law. Even though the model creators do not explicitly use the

sensitive attributes, proxy attributes often reveal the information

which can identify the individuals and their sensitive attributes.

Such a relationship is usually derived from the societal contexts

and makes the proxy attributes the focus of all the techniques to
investigate discriminatory behavior.

Gradient Feature Auditing (GFA) and FlipTest techniques are

explicitly designed to work in the black-box settings, i.e. when the

auditors do not have access to the model, and it can not be retrained.

Although in the experiments used in the evaluation of FairTest, the

authors had access to the models, the technique would also work

if the models were locked in a black-box, as FairTest mainly relies

upon the algorithmic output. Another shared property that comes

when dealing with the model outcome rather than the input is that

all the techniques test the model for disparate impact, rather than
disparate treatment. The bias responsible for the disparate impact

can be introduced at any stage, from historical trends in the data

to the unintended objective function in the model, and varies a

lot based on the prediction task. Consequently, the remedies for

the observed disparate impact is left as further exploration for the

domain experts.

Although the techniques seem quite similar, they do have many

differences in terms of model assumptions and the core principles

of their approach. FairTest uses decision-tree inspired, association-
guided tree construction routine to divide the dataset into smaller
populations that exhibit higher correlation with the algorithmic out-

put. The association metrics determine the strength of the observed

associations. The final output of FairTest is an association report that
an auditor can read to gain insights into possible discrimination.

GFA proposes creating a median distribution based on the similarly

ranked pairs of individuals and moving the real values towards the

median distribution byminimizing the earth mover’s distance (EMD).
It preserves the ranks within the protected groups and minimizes

the effect of the feature correlated with the protected attribute. The

result is an obscured version of the original dataset, and the drop
in model accuracy presents evidence for discrimination. The order

of features that cause the decrease in model accuracy represents

the ranking of the features responsible for disparate impact. Finally,

FlipTest employs GAN approximation for optimal transport map-
ping between two protected classes. The resulting flipsets and their

size is indicative of the model discrimination against a subgroup.

The transparency report is the FlipTest’s outcome for the domain

expert to inspect the features that change in the flipsets compared

to the remaining user subpopulation and narrow down the cause

of potential discrimination.

FairTest allows the use of multiple model outputs and attribute

values to compute the associations and works towards testing for

subgroup fairness. GFA is agnostic to the model output and is com-

patible with numerical and categorical attributes. It is designed to

audit for group fairness. Fliptest is only compatible with binary

model output and numerical attributes, and it examines the model

for subgroup and individual fairness. The similarities and differ-

ences between the three techniques are summarized in Table 1.

The differences also highlight the strengths and weaknesses of

each of the techniques. Beginning with FairTest, the technique’s

major strength could be presented as the compatibility of use of

regression to find association in the large output space. The ability

to consider the explanatory factors into the observed association

makes it a widely applicable testing toolkit. However, one short-

coming of the technique could be found in its association-guided

tree mechanism. Since it is inspired by the decision tree model used
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Technique Access
Setting

Inspection Surface Discrimination Stage Dataset Modification Modification Mecha-
nism

FairTest Black-box &

White-box

Proxy variables Disparate Impact User Subpopulation Association-guided

tree construction

GFA Black-box Proxy variables Disparate Impact Obscured dataset EMD to minimize

distribution transfor-

mation

FlipTest Black-box Proxy variables Disparate Impact Flipsets GAN approximation

for optimal transport

mapping

Technique Metrics Audit Report Model Outcome Fairness Category
FairTest Association

Metrics

Association Report Multiple Subgroup Fairness

GFA Accuracy

Drop

Feature Ranking Agnostic Group Fairness

FlipTest Size of flipsets Transparency Report Binary Subgroup & Individual Fairness

Table 1: A comparison of all the techniques reviewed in this work.

for classification, it assumes that the disparity is monotonically

related to the contextual attribute. In other words, it is limited by

binary splits for the continuous values of the protected attribute.

It also fails to provide any theoretical guarantee for the , and the

discovery of the association is bound by the required minimum

sample size for statistical tests. Although GFA is agnostic to the

model output, one of the drawbacks of the technique is its inabil-

ity to find discrimination based on multiple proxy attributes. It

also assumes that the model outcome is dependent on the inherent

ranking of individuals across the obscured attributes. Additionally,

they only rely on the change in model accuracy to quantify the

influence of a protected attribute. However, the model accuracy

might not be equipped to capture such a relationship in the context

of discriminatory behavior. The feature ranking presented as the

audit report in GFA is not as comprehensive as that of the other two

techniques. FlipTest’s most significant contribution is the use of

GANs to approximate an expensive but suitable algorithm to map

individuals from one protected group to the other. On the other

hand, one of the reasons the technique falls short is that it works

only with the binary model output, limiting the applications of

FlipTest to a wide variety of use-cases. Moreover, the discovery of

the discrimination and the creation transparency report presented

to the auditor do not scale well with the high-dimensional datasets.

7 DISCUSSION
In this paper, we presented the details of the three recent techniques

that concentrate on testing the ML models deployed in-the-wild for

discrimination and highlighting the reasons that might be respon-

sible for such behavior. The techniques represent the current set

of comprehensive auditing techniques, but as the applications of

machine learning as rising in different areas, especially where the

decisions can have a societal impact. For example, the recent studies

by Asudeh et al. [5, 6] propose coverage as a fairness definition. To
expand, coverage can be defined as fairness in rows or fairness in
representation rather than the classic notion of fairness in columns

or attributes. Suppose there are not enough samples representing a

set of individuals belonging to a subgroup. In that case, even the

most fair model can not learn a good decision boundary to distin-

guish the subgroup. Another set of recent studies done by Patro

et al. [32, 33] propose methods to establish fairness in two-sided

markets where the model should not exhibit any discriminatory be-

havior towards either the consumers or the producers. Such novel

notions of fairness emphasize the need for more comprehensive, ex-

tensive, and robust fairness auditing techniques that would require

redesigning from the ground up.
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