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Abstract
Scoring functions are used to represent the relevance of individual

documents. In modern recommendation systems, they are often

learned from data and play a pivotal role in ranking sets of doc-

uments in a way that maximizes utility to a user’s query. With

the recent interest in algorithmic fairness, the success of scoring

has naturally led to methods that learn scores that simultaneously

trade off fairness and utility. In this work, we show that in stark

contrast with utility-centric objectives, scoring is sub-optimal in

achieving all utility-fairness trade-offs. We establish this with a

series of counter-examples with a generic fairness formulation.

We show that the issue persists whether we have a deterministic

scoring function or a randomized one, or whether we measure fair-

ness at the scope of a single query or across multiple queries. On

the positive side, we experimentally demonstrate that semi-greedy

post-processing has the potential to achieve much better trade-

offs, often approaching the ideal of exhaustive post-processing in a

computationally tractable way.
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1 Introduction
Ranking is a basic task that has far-reaching contemporary appli-

cations. Recommendation systems have provided a key impetus

to understanding ranking, motivated by presenting documents in

response to a query, in such a way as to maximize engagement.

Yet, ranking emerges in many diverse settings. For example, one
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may want to rank sites to determine the order in which they are

inspected or to rank medical tests to decide the order in which they

are administered. A primary utility often quantifies how well these

ranking tasks are performed. With the diversity of applications,

however, we increasingly recognize the importance of trading-off

utility with secondary desirable objectives, such as fairness. To

achieve such trade-offs, the field has continued to adhere to a key

paradigm: learning how to score items based on the query and then

performing ranking via sorting by these scores. We review key

relevant work in this area in Section 2.

In this paper, we challenge this paradigm.More precisely, through

a series of analytical, simulation, and real examples, we show that

scoring cannot cover the entire range of achievable trade-offs and

often falls considerably short of it. The key insight that drives

this challenge is that, unlike utility, secondary objectives and in

particular fairness cannot be decomposed as the contribution of

individual items. On the positive side, we empirically demonstrate

that semi-greedy approaches along with simple relevance-learning

more effectively cover these trade-offs.

To make this thesis clear, we focus on the single-user case and

on a specific family of binary item-group fairness metrics as a

secondary objective, measured either per-query or across-queries.

Within this context, we give a precise definition of scoring and we

abstract away the particulars of the learning algorithms. Informally,

we define scoring as assigning to each item, based on its features, a

numerical score. This assignment may be deterministic or, in the

case of some models such as Plackett-Luce [22, 27], randomized. We

replace learning with two abstractions: the true relevances and the

group membership of items are known and the ranking procedure

can be determined based on exact knowledge of how items combine

to form queries. These assumptions can be thought of as operating

in the infinite-data regime. In Section 3, we make these definitions

and assumptions mathematically precise. Then, in Section 4, we

give counterexamples showing that scoring is not enough to achieve

optimal trade-offs. Some of these counterexamples are tractable

synthetic examples and some are based on numerical optimization.

In Section 5, we consider a simple alternative to scoring: learning

relevances without regard to the secondary objective and then, ex-

post, accounting for it. Since such post-processing needs to explore

the space of rankings, it can be intractable, except in very simple

settings. We show that having recourse to near-greedy approaches

can be an effective approximation that muchmore effectively covers

achievable trade-offs. Learning-to-rank via scoring is categorized

as an in-processing approach to tackle secondary objectives such

as fairness as part of the learning process. Often, in-processing

approaches are touted to offer more flexibility than post-processing.
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https://orcid.org/0000-0003-1540-8511
https://orcid.org/0000-0002-7826-8555
https://orcid.org/0000-0002-6479-9769
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Themain contribution of ourwork is thus to show that the nature

of scoring limits this flexibility when trading off a decomposable

utility and a non-decomposable objective such as fairness. Figure 1

gives an overview of the key ideas and results of the paper.

2 Related Work
2.1 Scoring Functions
Traditionally, one of the most common approaches to ranking doc-

uments has been based on giving a score to the documents and

then using the score to sort them [1]. A scoring function, often

learned, produces the score using the document features and a

user query. Using the scores, the documents are ranked in an order

such that the most relevant documents are shown first [7, 19]. The

scoring functions are evaluated using a utility objective, which

is defined over cumulative relevances of ranked documents for a

user. Prior works have explored learning methods in three scopes:

(𝑖) pointwise — scores are learned for each document against la-

beled relevances [13]; (𝑖𝑖) pairwise — scores are based on relative

relevances for document pairs [4, 8]; (𝑖𝑖𝑖) listwise — scores are

generated based on the complete list of documents presented [7, 9].

Recent works have focused more on the listwise scoring functions

since they allow direct optimization over the complete ranked doc-

uments and are easily compatible with the performance measures

[9]. One of the common techniques to train listwise learning-to-

rank (LTR) methods uses the Plackett-Luce (PL) model to output a

ranking based on the probability of selecting the next document

conditioned on observed documents. The PL model uses proba-

bilistic sampling, instead of a non-differentiable sorting function,

making the model differentiable and suitable for gradient-based

training methods. However, in practice, calculating gradients for

the PL model requires sampling all possible permutations given a

document set, making the problem computationally intractable [29].

To solve this, researchers have proposed several techniques to effi-

ciently estimate unbiased gradients of the PL model [18, 20, 23, 25].

In particular, we use the low-variance gradient estimation tech-

nique proposed by Gadetsky et al. to compute PL model gradients

for the listwise ranking implementation when comparing our alter-

native to scoring methods [11]. These are inspired by reinforcement

learning, and others have also used similar approaches for learning

scoring [12, 31].

2.2 Fairness in Ranking
As ranking systems have been adopted by socio-technical systems,

fairness has become a crucial requirement. Although scoring func-

tions are more suited for utility-based objectives, significant re-

search has been centered around developing fairness-focused scor-

ing functions that are used for ranking [2, 24, 30, 31]. One difference

we note in this recent work is the definition and scope of fairness.

For example, some researchers have investigated fairness between

individual documents [5, 6, 28], whereas others have studied the fair-

ness between documents belonging to groups [30, 31, 34]. Another

criterion to measure fairness is the difference in representation for

each ranking query [14] versus the difference in expected exposure

across multiple queries [24, 26]. An extensive review by Zehlike

et al. elaborates on the recent advances in fair ranking methods,

datasets used and their applications [35, 36]. We focus on item-

group fairness, though some of this work also considers fairness

toward users, rather than documents/items, and more recent work

also attempts to jointly be fair toward both users and items [16].

Ex-post approaches have not been too widespread, and we men-

tion two of the most relevant ones here. In [14], fairness is also

achieved ex-post, exactly based on alternations. In particular, there

is no notion of trade-off, and the focus is rather on learning scores

in a way that is aware of the post-processing. One of the closest

ex-post approaches to the present paper is the greedy approach of

[26], which however does not bring light to the fact that scoring is

otherwise suboptimal.

Our work studies the trade-offs between utility and fairness

for scoring and non-scoring based ranking methods. It shows the

inadequacy of the former in terms of achieving the best possible

trade-off. We show that our arguments hold for fairness definitions

across both single and multiple queries when considering group

fairness.

3 Problem Setting
We introduce notions of “scorability” to formalize what scoring

strives to achieve, without being bogged down by specific learning

procedures. We use the following notation. Let the set of possible

documents be denoted by D and individual documents be denoted

by 𝑑 ∈ D. We associate with each document a relevance rel(𝑑) ∈
[0, 1]. We assume that each query consists of a multiset 𝐷 of 𝑚

documents from D, to allow repetition. Relevances, in general,

depend on the query and the user placing the query. By forgoing

this dependence, we are restricting to a specific case. However,

when a limitation is present in a specific case it is also present in

the general case in that instance. Thus the conclusions of the paper

hold generally.

Deterministic and Random Ranking. A deterministic ranking 𝜎𝐷 is

defined as a permutation of the𝑚 documents in𝐷 , in a way thatmay

depend on𝐷 . 𝜎𝐷 (𝑖) = 𝑑 is interpreted as placing document𝑑 ∈ 𝐷 at

position 𝑖 .We assume that no selection ismade, that is all documents

in the query are ranked. More precisely, for each𝐷 , 𝜎𝐷 is equivalent

to a bijective map [𝑚] → 𝐷 . We also allow for randomized ranking.
In this case, 𝜎𝐷 is a random map defined through a distribution,

conditional on 𝐷 , over all𝑚! permutations. In other words, given

𝐷 , 𝜎𝐷 is sampled from this conditional distribution. Although 𝜎𝐷
always depends on 𝐷 , whenever 𝐷 is explicitly specified we drop

the subscript 𝐷 and simply write 𝜎 .

Utility. Utility, in general, is a function from 𝜎, 𝐷 toR+. In most

ranking applications, however, this utility decomposes as a sum.

A document at position 𝑖 delivers a utility to the querying user

based on its relevance as well as a factor that depends only on

position, captured by non-increasing weights𝑤𝑖 . The utility of a

deterministic ranking can then be given as:

U(𝜎, 𝐷) =
∑︁
𝑖

𝑤𝑖 rel(𝜎𝐷 (𝑖)) . (1)

Examples:

Recommendation systems If we use 𝑤𝑖 = 1/(log
2
𝑖 +

1) to capture position bias, utility becomes the discounted

2025-03-28 01:04. Page 2 of 1–10.
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Figure 1: Overview of the paper, highlighting key ideas about the limitations of scoring functions for utility-fairness trade-offs.

cumulative gain (DCG). Here,𝑤𝑖 rel represents an interaction
probability, thus maximizing utility boosts interaction.

Inspection sites Documents could refer to inspections sites,

with rel(𝑑) the probability of a failure occurring at site 𝑑 ,

and 𝜎𝐷 the order in which sites are visited to correct failures.

Then, choosing 𝑤𝑖 = −(𝑖 − 1)/𝑚 and maximizing utility

minimizes average uncorrected failure time.

For randomized ranking, because of its linearity, the notion of

utility extends in a straightforward way to expected utility. We keep

the notation the same, and distinguish the two instances based on

context:

U(𝜎, 𝐷) =
∑︁
𝑖

𝑤𝑖E [rel(𝜎𝐷 (𝑖)) |𝐷] . (2)

Note that the expectation is over random rankings, while the query

𝐷 is fixed.

Unfairness. In addition to utility, we are concerned with giving

documents a fair representation in the ranking. For the purpose

of defining fairness, we think of D as being partitioned into two

groups 𝐺𝑎 and 𝐺𝑏 , and use g(𝑑) ∈ {𝑎, 𝑏} as the group-membership

function. We capture fairness, or rather unfairness, by measuring

the disparity of relative representation between the two groups:

V(𝜎, 𝐷) =

������ 1

|𝐺𝑎 |
∑︁

𝑖:g(𝜎𝐷 (𝑖 ) )=𝑎
𝑤𝑖 rel(𝜎𝐷 (𝑖))

− 1

|𝐺𝑏 |
∑︁

𝑖:g(𝜎𝐷 (𝑖 ) )=𝑏
𝑤𝑖 rel(𝜎𝐷 (𝑖))

������
(3)

By convention, if either of the groups is not present in𝐷 , we assume

fairness is vacuously achieved and setV = 0.

For example, if the documents are interview candidates, util-

ity captures consideration probability, and the groups refer to two

racial groups, this disparity would be the difference of per-candidate

consideration across these groups. In the earlier example of inspec-

tion sites, if 𝐺𝑎 and 𝐺𝑏 are two geographical inspection zones, this

would be the disparity in failure time correction across zones. Other

variants of (3) can be justified in various contexts, e.g., normalizing

by the total relevance of each group instead of their sizes, using only

𝑤 in the sum instead of rel, etc. We choose (3) because it is a com-

mon disparity measure and gives a concrete instance to illustrate

the phenomenon that we aim to shed light on. This phenomenon,

however, is likely not limited to this choice, as we discuss later.

For randomized ranking, some authors (e.g., [31]) aggregate the

disparity over the random rankings within the absolute value in (3).

This can be thought of as corresponding to a long session in which

multiple rankings may be produced for a single query. However,

since (3) measures per-query unfairness and since during a single

query only a single ranking is sampled, we adhere to the more

natural choice of aggregating outside of the absolute value, i.e., a

short session:

V(𝜎, 𝐷) = E

������ 1

|𝐺𝑎 |
∑︁

𝑖:g(𝜎𝐷 (𝑖 ) )=𝑎
𝑤𝑖 rel(𝜎𝐷 (𝑖))

− 1

|𝐺𝑏 |
∑︁

𝑖:g(𝜎𝐷 (𝑖 ) )=𝑏
𝑤𝑖 rel(𝜎𝐷 (𝑖))

������
�����𝐷 ,

(4)
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Again, the expectation is over random rankings while the query

𝐷 is fixed, and we keep the notation the same and disambiguate

based on context. Readers interested in the effect of session length,

albeit in a slightly different setting, can be referred to [32].

Trade-offs. With the primary objective of utility and the sec-

ondary objective of fairness, we are interested in striking a good

trade-offs between utility (1) and unfairness (3). Trade-offs at level

𝛼 can be defined through the combined objective function:

T𝛼 (𝜎, 𝐷) = 𝛼 U(𝜎, 𝐷) − (1 − 𝛼) V(𝜎, 𝐷), (5)

where the minus in the second term refers to the fact that we strive

to increase utility, but to decrease unfairness.

Deterministic Scoring. Scoring, in a typical learning-to-rank frame-

work, produces a function score(𝑑) : D → R using either pair-

wise or list-wise data, as overviewed in Section 2. At query-time,

score(𝑑) is computed for each document in the query 𝐷 and the

ranking is produced by sorting the documents in decreasing score

order. The score-induced ranking can then be defined as:

𝜎𝐷,score = sort↓ (𝐷, score). (6)

To avoid ties, we assume score never assigns distinct documents in

D the same score (if it does, we arbitrarily break the tie by perturb-

ing by an infinitesimal number). With limited data, score typically
does not have direct access to rel, but rather depends on features

of the document, potentially including its group membership. To

narrow down on the issue at hand, consider instead the infinite-data

regime where score knows exactly rel(𝑑) as well as g(𝑑). Since this
information is sufficient to evaluate both (1) and (3), and thus (5),

there is no loss of capability in restricting score to be an arbitrary

function of these two attributes. Thus, moving forward, score(𝑑) is
always of the form

score (rel(𝑑), g(𝑑)) : [0, 1] × {𝑎, 𝑏} → R.

Randomized Scoring. Deterministic scoring is widely used, but

a softer variant gives more flexibility. In this case, score(𝑑) is a
random variable drawn independently from other documents in

𝐷 , from a distribution 𝑓𝑑 onR that depends uniquely on 𝑑 . In the

infinite-data regime, 𝑓𝑑 depends uniquely on rel(𝑑) and g(𝑑). In this
case, the score-induced ranking of (6) is a randomized ranking. The

main case of randomized scoring that we consider is the Plackett-

Luce (PL) model, a commonly used model for list-wise ranking [11,

14, 23, 25, 31, 33]. The best way to relate PL to randomized scoring

is to note that it is equivalent to learning a deterministic score ℎ(𝑑)
first, and then to randomize it by adding independent standard

Gumbel noise to each:

scorePL (𝑑) = ℎ(𝑑) + Gumbel.

This then induces a randomized ranking:

𝜎𝐷,PL = sort↓ (𝐷, scorePL) .

As proposed by Plackett [27] and Luce [22], an alternative way

of describing PL is as a sequential generation of the ranking itself,

through the probability of a document being ranked at the next

position 𝑖 , conditioned on the remaining documents up till that

point.

P
(
𝜎𝐷,PL = 𝜎 |𝐷

)
=

𝑚∏
𝑖=1

(
exp(ℎ(𝜎 (𝑖))∑𝑚
𝑗=𝑖 exp(ℎ(𝜎 ( 𝑗))

)
︸                     ︷︷                     ︸
P(𝜎 (𝑖 ) |𝐷\(𝜎 (𝑘 ) )𝑘<𝑖 })

. (7)

In learning to rank, typically,ℎ is parametrized using, for example, a

linear regressor or neural network that depends on the features of 𝑑 .

The resulting ranking sampling is often referred to as a stochastic

“ranking policy” 𝜋𝐷 . In the infinite-data regime, we can take ℎ

to be simply a function of the relevance and group membership,

ℎ(𝑑) = ℎ(rel(𝑑), g(𝑑)).

4 Suboptimality of Scoring
The central question of this work is whether, to strike good trade-

offs between utility (1) and unfairness (3), i.e., achieve a low value

of trade-off at a desired level 𝛼 (5), it is sufficient to rely on scoring

functions.

4.1 Deterministic Case
We start by address deterministic scores. We may have varying

levels of expectations of what a scoring function should accomplish.

The most stringent of these is to expect the score to rank each 𝐷

the best way possible. We can formalize this as follows.

Definition 1 (Strong Scorability). A pair of utility and unfair-
ness functions (U,V) is called strongly 𝛼-scorable if ∀ problem in-
stances (D, rel, g) ∃ deterministic score such that∀𝐷 = {𝑑1, 𝑑2, ..., 𝑑𝑚},
ranking them by score using 𝜎score = sort↓ (𝐷, score) achieves

T𝛼 (𝜎score, 𝐷) = max

𝜎
𝛼 · U(𝜎, 𝐷) − (1 − 𝛼)V(𝜎, 𝐷)

(8)

By allowing score to depend on the problem instance, Defini-

tion 1 abstracts away the notion that the scoring function may be

learned given sufficient data from this instance. What makes this

requirement stringent or “strong” is that we ask for optimality of

the trade-off for every query 𝐷 . We now provide the first evidence

that we should not take scoring for granted.

Theorem 1 (Counterexample to Strong Scorability). Let
U and V be given by Eqs. (1) and (3) with some monotonically non-
increasing non-constant𝑤 . Then, for any 𝛼 < 1, there exists a problem
instance (D, rel, g) such that ∀ deterministic scoring functions score
that can depend on the instance, there exists 𝐷 such that Eq. (8) fails.
Therefore, this choice of (U,V) is not strongly scorable.

Demanding that a scoring function achieve the optimal trade-off

for every query𝐷 may be seen as too strong, since the counterexam-

ple explicitly constructs a hard query 𝐷 to counteract each choice

of score. Does the issue persist if we relax this definition? Consider
instead the following notion.

Definition 2 (Weak Scorablility). A pair of utility and un-
fairness functions (U,V) is called weakly 𝛼-scorable if ∀ problem
instances (D, rel, g) and distributionsD onD ∃ a deterministic score
such that if the documents in 𝐷 are sampled ∼

i.i.d. D, then ranking
them by score using 𝜎score = sort↓ (𝐷, score) achieves

E𝐷 [T𝛼 (𝜎score, 𝐷)] =
max

𝜎𝐷
𝛼 · E𝐷 [U(𝜎, 𝐷)] − (1 − 𝛼)E𝐷 [V(𝜎, 𝐷)] . (9)

2025-03-28 01:04. Page 4 of 1–10.
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It is important to note that the maximization in Eq. (9) is over

𝜎𝐷 , the space of mappings from 𝐷 to permutations, and not over a

fixed permutation.

Theorem 2 (Counterexample to Weak Scorability). Let U
and V be given by Eqs. (1) and (3) with some monotonically non-
increasing non-constant 𝑤 . Then, there exists a problem instance
(D, rel, g) and a distributionD on D, such that for all scoring func-
tions score, Eq. (9) fails. Therefore, this choice of (U,V) is not weakly
scorable.

The reason the apparently weaker definition 2 does not change

the fortunes of scorability is because even though we are asking for

scoring to achieve the best average trade-off, this trade-off can still

be optimized query-by-query. This is because to optimize E𝐷 [𝑓 (𝜎)]
we can optimize E[𝑓 (𝜎)∥𝐷] for each 𝐷 , yielding 𝜎𝐷 .

4.2 Randomized Case
Having identified that deterministic scorability fails for the family

of utility and unfairness objectives considered, we now demonstrate

that randomization does not necessarily help circumvent the trade-

off gap. In particular, we focus on the widely used Plackett-Luce

model, we construct a specific tractable counterexample instance

where the Pareto frontier can be calculated, then numerically op-

timize the randomized scoring and demonstrate its suboptimal

trade-offs.

We build a counterexample where the best Plackett-Luce model

still suffers from a gap. We let weights to be the standard position

bias𝑤𝑖 = 1/(log
2
(𝑖) + 1). We choose D to have 𝑘 = 5 documents,

with the following composition (rel(𝑑), g(𝑑)) = (1, 𝑎), (2, 𝑏), (3, 𝑎),
(4, 𝑏), (5, 𝑎). We sample, i.i.d., queries 𝐷 consisting of𝑚 = 8 docu-

ments. This is the same as the synthetic data set described in Section

6, which also contains details about how the PL model is solved.

Primarily, to calculate gradients directly is intractable and one often

resorts to the log-trick, as in the REINFORCE algorithm, However,

a variance reduction technique proposed by Grathwohl et al. [15]

has been demonstrated to work well for training PL models [11],

and is particularly reliable for this simple counterexample.

The results are included as part of Section 6, in Figure 2. The navy

(top navy curve) is the exact (exhaustive) ex-post optimal solution.

We can see clearly that the PLmodel (bottom purple curve) is unable

to achieve good trade-offs in comparison. In Section 5, we propose

and explain the alternatives approaches plotted in the same figure.

4.3 Across-Query Fairness
The notion of unfairness given by Eq. (3) is per-query. Namely, we

measure the discrepancy between groups at the level of individual

queries. While this is reasonable in many applications, e.g., suggest-

ing male and female applicants in response to a single job posting,

there are other instances where fairness is better measured across

queries, e.g., whether certain movie categories are reaching a wide

enough audience. We now demonstrate that even in that setting,

scoring can be suboptimal.

We assume, as in the case of weak scorability, that queries are

formed based on a distribution 𝐷 ∼ D. The notion of utility is

mostly unchanged, except that we now average over all queries:

U(𝜎,D) = E𝐷∼D [U(𝜎,D)] . (10)

The notion of unfairness, however, is more radically affected.

Instead of aggregating representation per query, we aggregate it

across queries:

V(𝜎, 𝐷) =

������E𝐷∼D


1

𝑚P(𝐺𝑎)
∑︁

𝑖:g(𝜎𝐷 (𝑖 ) )=𝑎
𝑤𝑖 rel(𝜎𝐷 (𝑖))

− 1

𝑚P(𝐺𝑏 )
∑︁

𝑖:g(𝜎𝐷 (𝑖 ) )=𝑏
𝑤𝑖 rel(𝜎𝐷 (𝑖))


������

(11)

where

P(𝐺) = 1

𝑚
E𝐷∼D

[∑︁
𝑖

1{𝜎𝐷 (𝑖) ∈ 𝐺}
]
.

Definition 3 (Across-Query Scorability). A pair of across-
query utility and unfairness functions is called scorable if ∀𝛼 , ∀D,
∃𝑠𝑐𝑜𝑟𝑒𝛼,D such that if D = {𝑑1, 𝑑2, ..., 𝑑𝑚} ∼ i.i.d. fromD are sorted
using 𝜎 = 𝑠𝑜𝑟𝑡 (D, 𝑠𝑐𝑜𝑟𝑒𝛼,D) achieves

max

𝜎
𝛼 · U(𝜎,D) − (1 − 𝛼) · V(𝜎,D)

Counterexample to Across-Query Scorability. To demon-

strate that even in the across-query setting scorability is not to

be taken granted, we construct a specific example where we can

tractably solve for the optimal ranking.

In particular, we sample a query 𝐷 = {{𝑑1, . . . , 𝑑𝑚}} from docu-

ment distributionD i.i.d. (with replacement), whereD is a categor-

ical distribution of 𝑘 documents. We assume𝑚 ≥ 𝑘 . The number

of all possible multisets is given (( 𝑘𝑚 )). Within each multiset, the

number of possible permutations is given by

( 𝑚
𝑚1,...,𝑚𝑘

)
. Recall that

the maximization in Definition (3) determines, for every multiset

𝐷 , the particular permutation representing the way they would be

ranked. Unlike the per-query instance where the optimization could

be solved for each query separately, the across-query optimization

needs to take into account all queries simultaneously.

To solve this, we propose the following linear relaxation. A mul-

tiset is equivalently identified via the corresponding histogram

ℎ = 𝐻𝑖𝑠𝑡 (𝐷). Let 𝐽 (ℎ) be the set of all permutations within the

histogram ℎ, and let 𝑗 ∈ 𝐽 (ℎ) represent the indices of individual
permutations. In other words, 𝑗 ’s in all ℎ’s collectively define 𝜎 .

Each choice 𝑗 results in a contribution to utility, which we denote

byUℎ,𝑗 , as well as a contribution to the unfairness term within the

absolute values, which we denote byVℎ,𝑗 . These contributions can

be computed offline. If we relax the selection of the permutation to

a convex combination over permutations given by coefficient 𝑥 𝑗 |ℎ ,
akin to randomized sampling, the maximization of the trade-off can

be written as a linear program as follows:

2025-03-28 01:04. Page 5 of 1–10.
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Optimal Scoring Linear Program
𝜶 Utility Unfairness Utility Unfairness
0 11.75 0 11.16 0.00

0.1 11.75 0 13.21 0.00

0.2 13.27 0.33 13.21 0.00

0.3 13.27 0.33 13.21 0.00

0.4 13.27 0.33 13.21 0.00

0.5 13.27 0.33 13.21 0.00

0.6 13.36 0.45 13.21 0.00

0.7 13.36 0.45 13.21 0.00

0.8 13.36 0.45 13.21 0.00

0.9 13.36 0.45 13.21 0.00

1 13.36 0.45 13.36 0.45

Table 1: Across-query utility and unfairness: suboptimality
of scoring vs. direct optimization.

maximize 𝛼
∑︁
ℎ

𝑝 (ℎ)
∑︁

𝑗∈ 𝐽 (ℎ)
𝑥 𝑗 |ℎ Uℎ,𝑗 − 𝑍

subject to (1 − 𝛼)
∑︁
ℎ

𝑝 (ℎ)
∑︁

𝑗∈ 𝐽 (ℎ)
𝑥 𝑗 |ℎ Vℎ,𝑗 ≤ 𝑍

− (1 − 𝛼)
∑︁
ℎ

𝑝 (ℎ)
∑︁

𝑗∈ 𝐽 (ℎ)
𝑥 𝑗 |ℎ Vℎ,𝑗 ≤ 𝑍∑︁

𝑗∈ 𝐽 (ℎ)
𝑥 𝑗 |ℎ = 1, ∀ℎ

𝑥 𝑗 |ℎ ≥ 0, ∀ℎ, 𝑗
𝑍 ≥ 0 .

We choose a uniform distribution forD, which then results each

sequence to be equally likely. The probability 𝑝 (ℎ) for a histogram
ℎ is then computed using the multinomial coefficient, representing

the number of ways to arrange elements according to the counts in

ℎ:

𝑝 (ℎ) = 𝑚!

ℎ1!ℎ2! . . . ℎ𝑘 !

(
1

𝑘

)𝑚
.

As for the PL model, we choose 𝑘 = 5,𝑚 = 8, with the follow-

ing composition of documents (rel(𝑑), g(𝑑)) = (1, 𝑎), (2, 𝑏), (3, 𝑎),
(4, 𝑏), (5, 𝑎). Weights are chosen to be the standard position bias

𝑤𝑖 = 1/(log
2
(𝑖) + 1). This is the same as the synthetic data set

described in Section 6. To compare with scoring, we optimize over

all possible deterministic scorings by considering all 𝑘! different

orderings that they induce on the documents. The results are in

Table 1, highlighting a clear gap between scoring and the optimal

trade-offs. It is worth noting that despite the linear program being

a relaxation, it predominantly produces pure strategies, i.e., a single

ranking choice per multiset.

5 Alternatives to Scoring
Having seen the shortcomings of scoring in various context, be it

deterministic, randomize, per query𝐷 or across queries drawn from

a distributionD, we now turn our attention to potential alternatives

to overcome these shortcomings. In particular, we explore and

propose ex-post methods that can achieve better trade-off values

than scoring functions. In what follows, we assume that we know

the true relevance of the documents or that can accurately learn

them.

In Section 6, we compare these approximate ex-post approaches

to exact brute-force post-processing, that evaluates all the permuta-

tions for a sampled document set and finds the ranking that achieves

the best fairness trade-offs for the sampled set.

5.1 Greedy Approach
We design a greedy approach that creates a ranking that achieves

better trade-off values than scoring methods. The first step in the

greedy approach is to split the document set by groups, {𝑎, 𝑏}, and
within each group, sort the documents in decreasing order of their

relevance. The group-wise sorted document sets let the greedy

approach decide on the most suitable document for a better utility-

fairness trade-off by considering just the most relevant remaining

document from each group. This is similar to the approach followed

by [26].

The greedy approach starts with an empty list of ranked doc-

uments. For each position, 𝑖 , we add the most relevant document

from each group, {𝑎, 𝑏}, and calculate the trade-off for a given 𝛼 .

The document that achieves the maximum trade-off value is ranked

at position 𝑖 and removed from the group-wise sorted document

sets. The trade-off value at any position 𝑖 is computed for the pre-

viously selected documents and the one considered at position 𝑖 ,

given as:

𝜎𝐷 (𝑖) = arg max

𝑔∈{𝑎,𝑏}
𝑓

(
𝜎 ( [0, . . . , 𝑖 − 1]) ∪ {𝑑∗𝑔 }

)
, (12)

where 𝑑∗𝑔 is the document with the highest relevance from group 𝑔,

and 𝑓 represents the (truncated) trade-off function. We repeat this

process for all positions, and the final result is a ranked list of all

documents.

In theory, since we make the best decision at each position for a

given trade-off value, the greedy approach should achieve the best

possible trade-off for the complete ranking. However, in reality, the

unfairness of a ranking depends on the relative positions of other

documents, and the one-step decision in the greedy approach is

too myopic and can get stuck in a local optimum. This is another

reason why greedy performs better at higher 𝛼 values, where utility

is given more weight in the trade-off.

5.2 Beam Search
The second approach we propose is adapted from beam search [21],

commonly used in NLP procedures [10]. Beam search is similar to

the greedy approach we mentioned in 5.1 with a modification in

the number of documents the algorithm considers from each group.

Precisely, the algorithm takes 𝐵 and 𝐿 as inputs, which denote

beam size and look-ahead respectively and are used to determine

how many ranked list choices it keeps in memory with the highest

trade-off values.

We initialize a list of size 𝐵 with the most relevant document

from each group. For subsequent positions 𝑖 > 1, we collect the

top-𝐿 most highly relevant documents from each group in a round-

robin way, append them to the documents in each list to create

temporary ranking orders, and calculate their trade-offs. Suppose

the list of rankings in the beam is given as {𝜎1
𝐷
, . . . , 𝜎𝐵

𝐷
} such that

2025-03-28 01:04. Page 6 of 1–10.
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1 ≤ 𝑏 ≤ 𝐵 and the documents to be evaluated are written as

{𝑑ℓ𝑔 | 𝑔 ∈ {𝑎, 𝑏}, ℓ = 1, . . . , 𝐿}, then updating each ranking in 𝐵

could be written as:

𝜎𝑏𝐷 = argmax

1≤ℓ≤𝐿
𝑓

(
𝜎𝑏𝐷 ( [0, . . . , 𝑖 − 1]) ∪ {𝑑ℓ𝑔}

)
(13)

The number of rankings to be considered at each step is thus 𝐵 × 𝐿,

and we sort them in decreasing order of their trade-off values and

only keep the top-𝐵 lists to maintain our beam size. We repeat this

process until all the remaining documents in the set have been

ranked and the ranking with the best trade-off is returned. We

describe the complete beam search for ranking in Algorithm 1.

Algorithm 1: Beam Search for Utility-Fairness Trade-off

Input: Relevances rel’s, Group memberships 𝑔’s, Sampled

indices indices, Beam size 𝐵, Look-ahead size 𝐿,

Iterations 𝑁

Output: Trade-offs for varying 𝛼
foreach 𝛼 ∈ [0, 1] with step size 0.1 do

𝑓𝛼 = 𝛼 · U(𝜎, 𝐷) − (1 − 𝛼) · V(𝜎, 𝐷);
foreach iteration 𝑖 = 1, 2, . . . , 𝑁 do

Get relevance rel and group membership 𝑔 for

queried documents D;

Sort 𝐷 based on rel in descending order;

Group sorted 𝐷 into dictionary desc_group_dict based

on 𝑔;

Initialize the beam with top-ranked items from each

group;

Set beam_candidates to the 𝐵 best initial choices based

on their trade-offs;

for each position 𝑗 = 1, 2, . . . , |rel| − 1 do
Initialize empty sets for trade-off_list and

seek_indices;

for each beam candidate𝑤 ∈ beam_candidates do
Collect remaining unprocessed documents

for each group from desc_group_idx_dict;

Limit the number of documents from each

group to the look-ahead size 𝐿;

Combine remaining documents into a single

list;

for each document index ∈ remaining do
Compute trade-off for appending index to

beam candidate𝑤 ;

Append the trade-off and the updated

beam to trade-off_list and seek_indices;

Select the top 𝐵 beams with the lowest trade-off

values;

Update beam_candidates accordingly;

Select the final beam beam_idx as the candidate with

the lowest trade-off;

Compute final utility and unfairness for the selected

beam;

6 Evaluation
We evaluate both scoring via listwise Plackett-Luce ranking and

our ex-post approaches (greedy and beam search) on one synthetic

dataset and one real-world dataset. We show that, across all ranges

of 𝛼 , our approaches achieve considerably better trade-offs than

scoring. In the case of synthetic data, the results are also compared

to the optimal trade-off, which ex-post approaches but scoring does

not.

6.1 Data
Our evaluation is done on two datasets — a synthetic dataset and

the German Credit dataset [17]. To construct the synthetic dataset,

we select 𝑘 = 5 unique documents with relevances {1, ..., 5} and
alternating group membership {𝑎, 𝑏, 𝑎, 𝑏, · · · }. For each query 𝐷 on

the 𝑘 documents, we sample𝑚 = 8 random rankings. We sample

50,000 such queries to constitute a synthetic training set. The small

values of 𝑘 and𝑚 are intended to make the exact exhaustive ex-post

optimal solution tractable in this case.

We also adapt the German Credit dataset for a ranking task (as

done in [31]) by following a similar process to the synthetic dataset.

The German Credit dataset contains 1,000 rows of 20 attributes

comprising an individual’s creditworthiness and true relevances.

Relevances are binary in this case, i.e., creditworthy (rel=1) or not
(rel=0). Following the methodology of Singh and Joachims [31],

each query ranks 10 documents with a ratio of 4:1 for creditworthy

to non-creditworthy individuals. We perform an 80-20 train-test

split and sample 10,000 queries from the train split and 2,000 from

the test split. We use the protected attribute, sex, as the group

membership to calculate unfairness.

6.2 Experiments
We design the experiments to measure how trade-offs between

utility and unfairness are navigated by differentmethods at different

𝛼 values.

Ex-post — The ex-post ranking iterates over all possible per-

mutations given the documents in a query and finds the optimal

given an 𝛼 value. Naturally, this is an expensive operation and

takes O(𝑛!) time. Therefore, we perform this evaluation only for

the synthetic dataset with a smaller query size of𝑚 = 8. Using this

baseline, we get the best possible ranking for each query, which

allows us to contextualize the performance of the other approaches.

Greedy and Beam Search — These proposed alternative ap-

proaches are elaborated in Section 5 and in Algorithm 1. They are

approximate ex-post solutions that require knowledge of relevances,

either exact or learned.

PL model — We use PL-RELAX, the low-variance gradient esti-

mator for the Plackett-Luce distribution, proposed by Gadetsky et al.

[11], to train on our datasets. The proposed estimator is unbiased

and offers low variance compared to the other gradient estimators,

such as REINFORCE. The PL model is a listwise ranking algorithm

that learns a real-number preference over the documents and sam-

ples a ranking that optimizes a loss function. In our case, the loss

function is the trade-off between utility and unfairness Eq. (5).

2025-03-28 01:04. Page 7 of 1–10.
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Figure 2: Utility and unfairness values for 𝛼 = {0, 0.1, . . . , 1}
achieved by the brute-force ex-post (blue), beam search (or-
ange), greedy (green) and the trained PL model (purple) on
the synthetic dataset.

6.3 Results
Synthetic Dataset.We plot the results for the ex-post, beam search,

greedy, and the PL-model on the synthetic dataset in Fig. 2. Each

line corresponds to the trade-offs offered by one of the approaches

for 𝛼 ∈ {0, . . . , 1}. The greedy approach performs better than the PL

model with gradient estimates (shown in purple, labeled PL-RELAX)
and for 𝛼 > 0.5 gets close to the Pareto frontier achieved by the

ex-post approach. One reason that explains the better performance

of the greedy approach at higher 𝛼 values is as follows. When we

prefer utility over fairness, since our choice of documents across

groups is sorted in a decreasing order by relevance, the greedy

approach gets close to finding optimal rankings without much

exploration.

Compared to the greedy approach, the beam search performs

closer to the ex-post trade-off values. Especially at lower 𝛼 values,

it can achieve lower unfairness while having a comparative utility

to the greedy approach. Since the beam search evaluates trade-off

values for more documents for ranking, it “explores” more permu-

tations and, hence, can avoid making the suboptimal choice at the

immediate next step by only considering the next most relevant

documents, like in the greedy approach. Naturally, this exploration

depends on the parameter 𝐿, and in our evaluation, we see the best

results using 𝐿 = 1. Beam search does not completely avoid choos-

ing suboptimal documents at intermediate steps when unfairness

dominates utility (lower 𝛼 values), and finding the perfect fairness

for ranking remains a combinatorial problem [3].

German Credit Dataset. Unlike the synthetic dataset, where
we know the exact relevance of each document, we assume that

greedy and beam search have no access to the true relevances. To

learn the relevances from the dataset, we train a Logistic Regression

model that maps features to relevances, rel ∈ [0, 1]. The probability
of each individual being creditworthy (rel = 1) is treated as the

target variable for this prediction. Beam search and greedy use
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Figure 3: Utility (in log-scale) and unfairness values for 𝛼 =

{0, 0.1, . . . , 1} achieved by the beam search (orange), greedy
(green), and the trained PL model (purple) on the German
Credit dataset.

these learned relevances to rank the documents in a query, making

the scenario closer to a real-world instance where access to true

relevances is not always given. For the PL-RELAX approach, we

learn a linear model to map features to the Plackett-Luce coeffi-

cients. This gives PL the same representation power as the logistic

regression used to learn relevances for greedy and beam search.

Fig. 3 shows the trade-off curves traced by the beam search,

greedy, and PL-RELAX. Due to the larger size of the query in this

case (𝑚=10) compared to the synthetic dataset (𝑚=8), we do not

calculate the ex-post trade-offs.
Just like in the synthetic dataset, the beam search achieves the

best trade-off at each 𝛼 . Again, greedy achieves better trade-offs

as 𝛼 gets larger, but it maintains a gap with beam search until the

highest 𝛼 values. Despite all attempts to improve its convergence,

PL-RELAX does not achieve as significant of a trade-off.

The experiments on both datasets show the gap between the

trade-offs offered by a probabilistic scoring function from what is

possible to achieve. Our proposed approximate ex-post approaches,

on the other han d, achieve much better trade-offs for all 𝛼 values,

even in the absence of true relevances.

7 Conclusion
In this paper, we looked closely at the problem of learning to rank in

the presence of a traditional utility objective as well as a secondary

objective, namely fairness. We challenged the common paradigm

of learning a score per query-document pair, by giving several

counterexamples that show that this can fall short of achieving

good trade-offs between the two objectives. The key insight is

that, despite being an in-processing technique, scoring is limited

by the fact that fairness is non-decomposable in contrast to utility.

We showed that our approximate ex-post solutions, in the form of

greedy and beam-search, are tractable alternatives with much better

trade-off. They both, however, rely on learning relevances directly.
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This opens the question of, if other properties are learned during

in-processing instead of or in addition to relevances, whether they

could promote even better trade-offs.
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A Proofs
A.1 Proof of Theorem 1

Proof. Consider the function

𝜙 ( 𝑗) = 1

𝑗

𝑗∑︁
𝑖=1

𝑤 𝑗 −
1

𝑚 − 𝑗

𝑚∑︁
𝑖=𝑗+1

𝑤 𝑗 ,

with 𝑗 = 1, · · · ,𝑚 − 1. We claim that 𝜙 cannot be constant, unless

𝑤 itself is constant. Indeed, if 𝜙 (1) = 𝜙 (𝑚 − 1), it implies that

𝑤1 = 𝑤𝑚 , and since 𝑤 is monotonic, it in turn implies that 𝑤

is constant, leading to a contradiction. This particularly means

that we can always choose some 𝑝 ∈ {1, · · · ,𝑚 − 1} such that

|𝜙 (𝑝) | > |𝜙 (𝑚 − 𝑝) |.
Construct the problem instance as follows. Let D consist of two

types of documents, with (rel(𝑑), g(𝑑)) = either (1, 𝑎) or (1, 𝑏). Note
that, by choosing both types to have the same relevance, the utility

of all rankings will be the same, and the trade-off will only depend

on the unfairness term.

As previously discussed, we assume that score(𝑑) is a function
of (rel(𝑑), g(𝑑)) and that it cannot assign the same value to the

two distinct types of documents. W.l.o.g., assume score(1, 𝑎) >

score(1, 𝑏). Construct 𝐷 to have 𝑝 documents of type (1, 𝑎) and
𝑚 − 𝑝 of type (1, 𝑏). This means that the score-induced ranking

assigns the top 𝑝 spots to documents from𝐺𝑎 and the remaining

𝑚 − 𝑝 to 𝐺𝑏 . Note that the unfairness of this ranking is equal

to |𝜙 (𝑝) |. This, by construction, is larger than |𝜙 (𝑚 − 𝑝) |, which
is the unfairness we would have obtained had we placed the 𝐺𝑏

documents first and 𝐺𝑎 documents last. Therefore, for this choice

of 𝐷 , Eq. (8) fails and it follows that strong scorability does not

hold. □

A.2 Proof of Theorem 2
Proof of Theorem 2. Construct the problem instance similarly

to the proof of Theorem 1. Choose D to have two types of doc-

uments (rel(𝑑), g(𝑑)) = (1, 𝑎) and (rel(𝑑), g(𝑑)) = (1, 𝑏). Let D
sample from each group equally. Let 𝑝 be as before, and assume,

w.l.o.g., that score(1, 𝑎) > score(1, 𝑏). Since, through iterated ex-

pectations and the fact that we have full control of 𝜎𝐷 for each 𝐷 ,

we have:

max

𝜎𝐷
𝛼 · E𝐷 [U(𝜎, 𝐷)] − (1 − 𝛼)E𝐷 [V(𝜎, 𝐷)] =∑︁
𝑖

𝑤𝑖E𝐷
[
max

𝜎
−(1 − 𝛼)E [V(𝜎, 𝐷)]

]
=∑︁

𝑖

𝑤𝑖E𝐷
[
max

𝜎
−(1 − 𝛼)V(𝜎, 𝐷)

]
Now note that with positive probability, 𝐷 will have exactly 𝑝

documents of𝐺𝑎 and𝑚−𝑝 documents of𝐺𝑏 . We know, from proof

of Theorem 1, that in that case V(𝜎, 𝐷) is not minimal with the

scoring-induced ranking. This implies that the overall expectation

is not maximal. Therefore, Eq. (9) fails, and it follows that weak

scorability does not hold. □
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