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Abstract
Efficiency and fairness are conflicting objectives
for resource allocation problems. Although well-
studied, its ubiquity in numerous applications
keeps presenting researchers with new challenges.
In this work, we study the relationship of resources
with efficiency and fairness and how it affects their
tradeoff. We motivate the effect of resources on
group utilities and the evaluation measures through
the framework of homogeneous functions. Then,
we explore the tradeoff together with three decision
choices — allocating resources based on needs vs.
outcomes, measuring social welfare as maximizing
vs. minimizing objectives, and expressing fairness
in terms of absolute vs. relative measures. Each
choice presents us with a rich, complex setting and
different desirable solutions. We illustrate our find-
ings through stylized examples and then a more re-
alistic example based on restaurant inspections.

1 Introduction
Resource allocation with respect to efficiency and fairness
is often studied under the assumption of a fixed pool of re-
sources. However, organizations often need to make a case
for the benefits of being supplied with additional resources
(e.g., when applying for grants). Similarly, a government fac-
ing budget cuts will care about the implications of reducing
the resources provided to various departments. In such situa-
tions, it is not immediately clear how the change in resources
impacts efficiency and fairness, since the change can affect ef-
ficiency and fairness not only individually but also together.
For example, imagine a local government applying for a fed-
eral grant to improve public transit — the funds could be used
to improve service (efficiency), start new lines that improve
access (fairness), or improve both service and access (effi-
ciency and fairness). Our paper approaches this problem by
studying the change in the tradeoff between efficiency and
fairness with a change in resources.

One might imagine that the effects of a change in resources
could be understood simply by using any standard approach
to the trade-off between efficiency and fairness at the new
level of resources. As one example, we could study what
would happen if we always chose the most efficient way to

deploy the resources and compare it to the fairest way as is
done, e.g., in the literature on the Price of Fairness [Bert-
simas et al., 2011; Donahue and Kleinberg, 2020] (see Ap-
pendix A). Perhaps surprisingly, we find that such compar-
isons depend on subtle details of the way fairness and ef-
ficiency are measured. For example, given the exact same
scenario different measurements will conclude that fairness
increases linearly, sublinearly, or not at all with efficiency as
resources are added. To study this interaction between re-
sources and objectives, we zoom into the specific context to
understand (i) how the tradeoff changes with a change in the
amount of resources, (ii) how different definitions of societal
objectives — efficiency and fairness — change the observed
effect of resources.

On a technical level, we address (i) by explaining the ef-
fect of changing resources through the lens of homogeneity, a
property of some functions that determines how they behave
when scaling up their inputs. We observe that many com-
mon choices for utility functions and fairness measures are
homogeneous and demonstrate how the degree of homogene-
ity affects the nature of tradeoffs. We use homogeneity to
make several observations about tradeoff analysis. These ob-
servations address (ii) by highlighting how seemingly small
technical details can lead to substantially different quantifica-
tions of tradeoffs and, thus, different decisions. In particular,
we focus on the following three decisions:

• Should we measure utility in terms of the needs fulfilled
or the outcomes created by fulfilling that need?

• Should we frame the optimization in terms of maximiz-
ing benefits or minimizing a cost function?

• Should we measure fairness violations in terms of the
absolute or relative disparity in utilities?

All of these questions capture some aspect of the fact that
efficiency and fairness are not dimensionless measures and
none of these questions has an obvious right answer. Most
combinations of answers seem reasonable for at least some
plausible situation. But we expose how these technical deci-
sions have important implications.

Need vs. outcomes captures the difference between ana-
lyzing the number of resources deployed to, e.g., each region
of a city (adjusted based on population and other factors rele-
vant to determining “need”) and what positive benefits the re-
sources produce. From a mathematical perspective, the need



version is linear: each additional resource produces a con-
stant benefit; measuring output is more complex but allows
us to capture non-linearities: going from one street sweeper
to two halves the time between cleanings, but going from two
to three reduces it by a third. We show through a simple
stylized example that the two formulations have very differ-
ent implications for the fairness benefits of adding resources.
In the former case adding resources will tend to exacerbate
unfairness, as the efficient solution will concentrate them in
the neediest region, while in the latter case the diminishing
marginal returns of resources tend to lead to improved fair-
ness when adding resources. Our point is not that one of
these two choices is “right” (that may depend on what bet-
ter captures the preferences of stakeholders in the situation),
but rather that this simple modeling choice can substantially
affect the way adding resources affects the tradeoff between
efficiency and fairness.

Similarly, we could equally well define a utility function
to capture the benefits of allocating resources or a societal
cost function to capture the cost of only having allocated a
limited number. (In the street sweeping example, this cost
function might capture the amount of time the streets remain
uncleaned.) This question turns out to have a non-obvious
linkage to the third. We argue that the combination of mea-
suring the utility of resources in terms of the reduction in so-
cietal costs and using relative disparity to measure fairness
often leads to unreasonable conclusions about tradeoffs. In
particular, it suggests that even with ample resources, so that
there is little societal cost to any group, it is still possible
for the efficient allocation to be extremely unfair. Returning
to our earlier example, consider a city with two regions, re-
gion A and region B, receives a huge grant to hire more street
sweepers such that it can reduce the overall street sweeping
times. In region A, the sweeping time reduces from 2 days
to 6 hours, and in region B, from 1 day to 3 hours. Although
more resources are allocated to region A, we still reduce the
disparity when measured in absolute terms and the overall
time for which streets stay unclean. In relative terms, such as
the ratio of sweeping times between the regions, the disparity
indicates no improvement. We argue this is unreasonable; at
some point, the gap will close enough that most people will
agree that the outcome seems reasonably fair in practice, even
if some difference remains.1

In contrast, when a simple transformation of the efficiency
axis reframes the optimization in terms of benefit, the exact
same scenario would be evaluated as near-perfect fairness at
even low resources. That is, if there are 30 days in a month
then at the initial level of resources region A has 28 “clean
days” while region B has 29, a ratio much closer to perfect
fairness. This issue disappears when using absolute dispar-
ity to quantify fairness. At first, it seems absolute disparity
presents us with the best choice possible, but it is less inter-
pretable than relative fairness, and when utilities are treated
as a proxy for needs (rather than outcomes), more resources
decrease the fairness. Such caveats complicate making a rec-

1If six versus three hours still seems substantially unfair to you,
what about six versus three minutes? Seconds? At some point, the
claim that fairness has not improved becomes untenable.

ommendation in isolation and desire a more nuanced consid-
eration. We propose that the choice of these different perspec-
tives with changing resources can be understood by examin-
ing the homogeneity (or lack thereof) in the relevant defini-
tions. In particular, homogeneity highlights the avoidable pit-
falls of combining relative disparity and societal costs when
resources can change.

Having illustrated these factors using a stylized model,
we then show their relevance in a more realistic decision-
making scenario with discrete, indivisible resources by ex-
amining their effects on the optimization of restaurant inspec-
tion schedules based on data from Chicago [Schenk Jr., 2015;
Singh et al., 2022]. We observe behavior broadly consistent
with our homogeneity-based predictions.

In summary, our main contributions are:
• Proposing using the homogeneity of many common util-

ity functions and objectives as a tool for understanding
the effects of adding resources on the efficiency-fairness
tradeoff. (§3 & 4)

• Demonstrating through stylized examples that three tech-
nical choices can have a substantial effect on the shape
of these tradeoffs and that homogeneity can help explain
this. (§5 & 6)

• Confirming that these insights are relevant in a scenario
based on a real dataset that does not perfectly satisfy our
stylized assumptions. (§7)

2 Related Work
Resource Allocation
Resource allocation has been studied in several forms and dis-
ciplines. Fair division literature has offered some notions
of fairness that have been implemented in several applica-
tions. For example, Ghodsi et al. [2011] uses dominant re-
source fairness for scheduling computing tasks. For hetero-
geneous resources, researchers have used envy-based fairness
notions [Wang et al., 2024] and extended them to group fair-
ness [Aleksandrov and Walsh, 2018]. Another prominent area
for resource allocation is policy-making [Rodolfa et al.; Bas-
tani et al., 2021]. Several works have proposed simulation
studies to determine fair resource allocation for government
agencies [Rodolfa et al.; Nguyen et al., 2023; Singh et al.,
2022], long-term fairness goals [Deb, 2011], COVID-19 test-
ing [Bastani et al., 2021], kidney exchange [McElfresh and
Dickerson, 2018], and under censored feedback [Elzayn et
al., 2019]. Recent work has also studied counterfactual util-
ities for resource allocation [Kube et al., 2023; Blandin and
Kash, 2023]. Our work is inspired by these applications and
studies the relationship between group utilities and scalable
resources that determine the efficiency and fairness of a re-
source allocation solution.

Tradeoffs
The tradeoff between efficiency and fairness is intrinsic
to decision-making with multiple objectives. Prior works
have analyzed the tradeoffs between multiple fairness def-
initions [Kleinberg et al., 2017; Friedler et al., 2021; Her-
tweck and Räz] and with performance and fairness mea-
sures [Brandao, 2021; Chen and Hooker, 2020; Liu et al.,



2022; Radovanovic et al., 2020; Andrews et al., 2022; Hei-
dari et al., 2018; Singh et al., 2022]. Recent work by Mashiat
et al. [2022] presents resource allocation settings closest to
ours with housing services that have non-uniform utility and
capacities. They propose four fairness definitions that can
be written as differences and ratios. Their findings state that
same allocation can portray different groups as favored based
on the chosen definition. Unlike their definition of tradeoff,
which only considers fairness, we study the tradeoff between
efficiency and fairness and the effect of resources on it.

3 Utility as Homogeneous Functions
Consider T different types of resources have to be allocated
to G groups for g ∈ {1, . . . G}. The number of resources al-
located for each type is nt for t ∈ {1, . . . , T}. Although each
resource type is different, the resources within each type are
assumed to be uniform and interchangeable. Mashiat et al.
[2022]’s work on housing services illustrates one such setting
where multiple resources capture different types of services.
However, our formulation also works for cases with a single
type of resource, for example, the number of public libraries
in a neighborhood. Each group g receives some amount of
each resource type and derives a benefit from this, which we
call group utility denoted as ug . We define total utility, or
social welfare as an aggregate of the group utilities, which
is a measure of total benefit drawn by all the groups from
the allocated resources. An interesting property of the group
utilities we explore in this section is homogeneity. When the
group utilities are homogeneous functions of the resources al-
located to them, it implies that if the allocated resources to a
group are scaled by a factor of s, the resulting group utility is
scaled by the same factor raised to some power k.

Definition 1 (Homogeneous Function). A function f :
RT

>0 7→ R is (positive) homogeneous of degree k if f(sX) =

skf(X), where s is a (positive) scalar and X is a T -
dimensional vector of (positive) real numbers.

Homogeneous utility functions allow us to model varied
effects of the change in resources using group-specific func-
tions. Even with a single type of resource, we can capture a
wide variety of forms for ug(rg) including linear, monomials
such as r2g , and even inverse relationships such as 1

rg
if it is

an undesirable thing such as polluting industrial activity. In
a resource allocation setting, our objectives would combine
(in the case of efficiency) or compare (in the case of fairness)
the benefit resource units r ∈ RT

≥0 bring to the groups. If
we have an objective function f measuring fairness of effi-
ciency that is also homogeneous, the resulting combination is
homogeneous as well:

Proposition 1. If the group utilities are homogeneous func-
tions of degree k1, and the objective function is defined as a
homogeneous function of degree k2 over the group utilities,
then the resulting combination is a homogeneous function of
degree k1k2.

Proof. The statement is direct from the definition of homo-
geneity. Consider G groups whose utility functions are de-
noted as ug(·), and let rg = [r1, . . . , rT ] denote the resource

allocation.

f(u1(sr1), . . . , uG(srG)) = f(sk1u1(r1), . . . , s
k1uG(rG))

= sk1k2f(u1(r1), . . . , uG(rG))

Using Proposition 1, we present two applications where
the choice of the objective function can lead to different out-
comes based on the change in group resources. First, consider
a linear function of the group utilities as an objective. This
is common when considering efficiency measures like social
welfare and fairness measures that consider the difference in
group utilities.2 A linear function is homogeneous of degree
1. Thus, the effect of change in resources on linear functions
is to scale the objective accordingly.
Corollary 1. If the group utilities are homogeneous functions
of degree k, then a linear function of the group utilities is also
a homogeneous function of degree k;

f(u1(sr1), . . . , uG(srG)) = skf(u1(r1), . . . , uG(rG)) .

Second, we explore another natural choice for objective
functions, a ratio of the group utilities. Ratios are particularly
amenable when quantifying comparisons as they are relative
– compared to a known quantity (denominator), independent
of units, and could be expressed in fixed intervals, making
them easy to understand. Since ratios are defined over two
quantities, for this example, let us assume g = 2, but our re-
sults extend to any number of g via simple transformations,
for example, comparing extrema over a set.3

Corollary 2. If the group utilities are homogeneous functions
of degree k, then their ratio is a homogeneous function of
degree zero. Thus,

u1(sr1)

u2(sr2)
=

u1(r1)

u2(r2)
.

An important implication of this corollary is that f(·),
when calculated as a ratio of the group utilities, the result
is independent of any changes in the total resources r. This
result highlights an important caveat of using ratio as an ob-
jective function, and we further examine the implications of
this behavior in the later sections.

Of course, these results only apply when the resources al-
located to all groups are scaled up by the same constant. It
is not immediately obvious that we should do so; perhaps it
would be better to allocate the additional resources dispropor-
tionately to one group. However, for homogeneous functions,
scaling up evenly is optimal.
Proposition 2. Let r∗ be the optimal allocation of some
quantity of resources given group utilities which are homo-
geneous of degree k1 and an objective f which is homoge-
neous of degree k2. Then given s times as many resources the
optimal allocation is sr∗.

2Defining fairness in terms of group utilities is a way to ex-
tend standard group fairness notions beyond classification set-
tings [Blandin and Kash, 2023], and has been used in prior work
on resource allocation [Donahue and Kleinberg, 2020; Singh et al.,
2022; Globus-Harris et al., 2022]

3Demographic Parity Ratio (DPR) for more than two groups is
often defined as the worst case, min-max ratio [Ghosh et al., 2021;
Weerts et al., 2023].



0.5 1.0 1.5 2.0 2.5 3.0
Fairness F( )

0.0

0.5

1.0

1.5

2.0

2.5

Ef
fic

ie
nc

y 
E(

)

100 resources
200 resources
300 resources

Figure 1: Hypothetical Efficiency-Fairness tradeoffs at varying
amounts of resources. The circles joined by the dashed lines show
one possible increase in fairness and efficiency obtained by increas-
ing the resources. The other dashed lines show alternate possibili-
ties.
Proof. Any other allocation can be written in the form sr
where r∗ and r allocate the same total amount of each re-
source. Then we have:

f(u1(sr
∗
1), . . . , uG(sr

∗
G)) = sk1k2f(u1(r

∗
1), . . . , uG(r

∗
G))

≥ sk1k2f(u1(r1), . . . , uG(rG))

= f(u1(sr1), . . . , uG(srG)),

where the two equalities follows by Proposition 1 and the in-
equality follows from the optimality of r∗.

4 Resources as New Dimension of Fairness
The total amount of resources is one of the largest constraints
when designing the algorithm for a socio-technical problem.
This is often presented as an immutable dimension and, there-
fore, often overlooked when considering the desirable effi-
ciency and fairness properties of an algorithm. However, we
argue that providing resources can be as important as the sac-
rifice of efficiency, making this dimension equally important
when considering fairness tradeoffs.

Let’s revisit the example of a local government applying
for a federal grant (see §1) that makes more resources avail-
able. Naively applied, without changing any algorithm pa-
rameterization, more resources may increase efficiency but
lower fairness or vice versa. Or more resources can simulta-
neously increase both efficiency and fairness. More broadly,
we could retune our algorithm and the exact set of choices
available to us would vary based on the upper and lower
bounds of the solutions to the multi-objective optimization.

We show a hypothetical example of the transformation to
the relationship between efficiency and fairness based on the
resources available in Fig. 1. On the X-axis, we show a hy-
pothetical homogeneous fairness function F (·), and on the
Y-axis, a homogeneous efficiency function E(·). Each trade-
off curve shows the scaling of the efficiency and the fairness
functions for 100, 200, 300 resources. Each curve presents
a different Pareto front offered by scaling the resources and
each individual marker shows one possible allocation along
with its efficiency and fairness. Thus, this figure captures
how the tradeoff curve changes with resources, in this case
keeping its shape (as in Corollary 1).

Let’s say our current amount of resources is 200 (orange
triangles), and our current operating point is illustrated by

the circle on the tradeoff curve in Fig. 1. The dashed lines
between the operating point associated with 200 resources
and the one on the 300 curve (green crosses) show a pos-
sible improvement along both axes – efficiency (Y-axis) and
fairness (X-axis), both individually and together, from a grant
that added 100 resources. If we use the increase in resources
purely to improve fairness, the resulting improvement is es-
sentially the same as keeping the resources the same and mov-
ing fully to the fair end of the Pareto frontier. Similarly,
the efficiency achieved by the increased resources (vertical
dashed line) is beyond what is possible with 200 resources.
Faced with this scenario, we would argue that the most impor-
tant decision is likely not the tradeoff between efficiency and
fairness but the tradeoffs involved in getting more resources.
Thus, it is important to quantify this third dimension when
examining such tradeoffs. Using this same example (Fig. 1)
in Appendix A, we show how PoF can lead to incomplete
conclusions about the tradeoffs and how homogeneity can ex-
plain this.

5 Utility — Need vs. Outcome
Imagine a scenario in which groups have different utilities
and are known to us. We want to explore how the choice of
measuring the efficiency based on the needs of those groups
compares to the outcomes those groups desire. Such alterna-
tive ways to calculate efficiency can present decision-makers
with different magnitudes of feasible, competing measures.

Consider two groups, g ∈ {g1, g2}, among which we need
to divide the n resources of a common type |T | = 1, and
values of n range from 2 to 10. Suppose we know the two
groups have different utilities, ug(rg), gained from receiving
some amount of resource, rg . We define their need-based
utilities as:

ug1(rg1) = 2rg1 , ug2(rg2) = rg2 . (1)

Here, one group, g1, derives twice as much utility from re-
ceiving r resources as the other group, g2. This assumption
might reflect, for example, greater importance of the resource
to g1 or a greater capacity to use it effectively. Let’s con-
sider two methods of resource allocation among the groups,
{g1, g2}. An efficient allocation would assign all the re-
sources to g1, given its higher utility. On the other hand, a
fair allocation would split the resources among the groups so
that each group gets equal utility from their allocation. Our
goal is to measure the efficiency and fairness of the alloca-
tions. We compute the efficiency for the allocations by aver-
aging the sum of utilities over the groups. We can calculate
the unfairness by using the L2 norm over the difference be-
tween each group’s utility and efficiency of the allocation. As
is often done, we transform the unfairness into a maximizing
fairness function by subtracting the unfairness from a con-
stant, C, so that the fairness values are non-negative. For our
example, we chose C based on the highest value of unfairness
achieved across levels of resources, but C could be any arbi-
trarily high value to ensure boundedness. Since we compute
the L2 norm of two absolute values, we term it absolute fair-
ness. The efficiency and absolute fairness functions are given
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Figure 2: The efficient allocation (blue circles) and the fair alloca-
tion (orange triangles) show the ends of the Pareto front representing
an increasing number of resources. Efficiency and fairness are com-
puted using need-based group utilities.

as follows:

E(r) =
1

|{g1, g2}|
∑

g∈{g1,g2}

ug(rg) , (2)

Fabs(r, E(r)) = C −
√ ∑

g∈{g1,g2}

(ug(rg)− E(r))
2
. (3)

Absolute fairness is a widely adopted definition of
(un)fairness for multi-group settings [Dwork et al., 2018;
Donini et al., 2018], although the choice of the norm may
vary. We show the efficiency-fairness tradeoff curves in
Fig. 2, where each pair of circles and crosses show the ends
of a Pareto front corresponding to one choice of n. The low-
est blue and orange marks correspond to 2, while the highest
corresponds to 10. We note that the fairness (X-axis) for the
fair allocation (orange triangles) stays the same since regard-
less of the number of resources, we can choose a perfectly
fair solution. However, the increase in resources produces
an increase in the efficiency of this fair allocation. In con-
trast, efficient allocation starts with lower absolute fairness,
and as the resources are added, the fairness decreases as one
group’s utility dominates the allocation. We can characterize
the effect of resources for efficient allocation as a property of
homogeneity (see §3). Since efficiency, fairness4, and both
utilities are all homogeneous of degree 1, we observe both
axes changing by a constant factor. As a result, the gap be-
tween the allocations with maximum fairness and maximum
efficiency becomes wider as the resources increase. This ex-
ample highlights the caveats of adding resources when they
have a linear relationship with the group utilities and could
be thought of need-based allocation. A real-world example
of such a scenario would be allocating the number of police
officers to neighborhoods by the crime-per-capita metric. If
a decision-maker is not deliberate about how the resources
are assigned in this setting, the results might be much worse
along one axis than the other.

Now let’s consider another form of a utility function, out-
come-based. Imagine each group has a fixed number of jobs
that must be completed. In that case, adding an extra resource
will speed up the completion time, increasing the group util-

4It is only homogeneous without the constant C. As we are in-
terested in the difference between points, the C naturally cancels.

ity by the inverse factor. This yields a utility of the form:

ug1(rg1) = 1− 1

2rg1
, ug2(rg2) = 1− 1

rg2
. (4)

Analogous to need-based utility functions described in Eq. 1,
one group, g1 benefits more from the same amount of re-
sources than g2. Using the same allocation mechanisms de-
scribed above and the methods to calculate efficiency and ab-
solute fairness, we plot the tradeoff curves for different re-
sources in Fig. 3a. Unlike Fig. 2, the fairness (X-axis) of the
efficient allocation increases as we add more resources, as in-
creasing resources brings the utilities for both groups closer
to 1. Because the efficient solution has now changed, the in-
verse relationship between the resources and group utilities
causes the gap between the extreme points of the Pareto front
– efficient allocation (blue circles) and fair allocation (orange
triangles) to shrink with the addition of resources. Since the
(differences in) group utilities are homogeneous of degree -1,
changes in measures of efficiency and fairness diminish with
added resources. In this type of scenario, where there are
diminishing returns to providing additional resources, with
enough resources we would naturally converge towards a
more efficient solution for a low cost of fairness. A real-
world example includes buying more snowplowing machines
for city neighborhoods. Adding more machines helps all the
regions and the effect of fair or efficient allocation starts to
vanish after a while.

Our point is not that either formulation of utility is better
than the other. It is up to stakeholders whether the importance
of, e.g., police is in providing a feeling of safety through their
presence or in their effectiveness at preventing crime. Sim-
ilarly, fairness in one case corresponds to no group feeling
over- or under-policed relative to others, while the other cor-
responds to equalizing the crime experienced. All of these
may be reasonable goals. Our point is that choosing one or
the other (or even a combination) can have a substantial im-
pact on the nature of efficiency-fairness tradeoffs, and that
homogeneity can help us understand the shape of impact we
should expect.

6 Expression of Goals
In this section, we explore the example with the outcome-
based utilities (Eq. 4) to investigate how different expres-
sions of efficiency and fairness can modify their purpose and
choice for the best decision. We modify both, together and
separately, the fairness measure from absolute to relative and
switch the interpretation of efficiency from maximizing a util-
ity function to minimizing a cost function.

In addition to absolute fairness (Eq. 3), another expression
for fairness is through ratios. Relative fairness could be de-
fined as the geometric mean of the ratios of group utilities and
allocation efficiency, given as:

Frel(r, E(r)) =
∏

{ g∈
g1,g2

}

(
min (ug(rg), E(r))

max (ug(rg), E(r))

) 1
|{g1,g2}|

(5)

This relative expression of fairness is useful when the fair-
ness goals are set based on the other group utilities and inde-
pendent of the actual units. We show the efficiency-fairness
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(d) Relative Fairness for Costs

Figure 3: The Pareto front with an increasing number of resources when efficiency (Y-axis) and fairness (X-axis) are computed using outcome-
based group utilities.

tradeoff and resources in Fig. 3b. Similar to Fig. 3a, the
Pareto front contracts as we increase the resources, and the
efficient allocation moves closer to the fair allocation. How-
ever, the relative fairness measure shows that efficient allo-
cation moves more towards fair allocation when adding re-
sources at lower resource levels than the absolute fairness
measure. In other words, the improvement in relative fairness
appears to be sublinear compared to the linear growth with
absolute fairness. This is despite the efficient allocation being
exactly the same in the two cases. Although both measures of
fairness are not directly comparable, we can identify ways
they lead to different conclusions. For example, the slope of
the line between the efficient and fair solutions is steeper at
low resource values and shallower at high resource values in
Fig. 3b than Fig. 3a. This might lead to different decisions
about how much utility to trade for fairness depending on the
choice of absolute vs. relative.

Thus far, we have only looked at the efficiency measures
that must be maximized for social good. Now, we explore the
effect of a cost function that must be minimized. Continu-
ing with our example of outcome-based utilities, we slightly
change the group utilities keeping the privileged group as-is.
They are given as follows:

cg1(r) =
1

r
, cg2(r) =

1

2r
. (6)

We compute the societal cost similar to the efficiency (Eq. 2),
but the utilities now aggregate to a quantity whose objective
is transformed into a reduction in loss incurred to the soci-
ety when a resource is unavailable. From an optimization
perspective, this transformation is harmless: maximizing ef-
ficiency and minimizing cost are equivalent. Combining the
homogeneity of cost (degree −1), societal cost (degree 1), ab-
solute fairness (degree 1), and relative fairness (degree 0), we
can now apply our theoretical results to these scenarios.

We contrast the cost vs. absolute fairness and relative fair-
ness in Figs. 3c & 3d respectively. Consistent with the find-
ings in Fig. 3a, Fig. 3c shows the shape of the Pareto front
inverted across a line parallel to the X-axis, and it shrinks as
the cost for the efficient and fair allocation reduces. Proposi-
tion 1 tells us that both axes are homogeneous of degree −1,
which is why each doubling of the resources halves the gap
to optimality on each. On the other hand, Fig. 3d illustrates
an interesting result. When measuring relative fairness with
costs, the fairness (X-axis) for efficient allocation (blue cir-
cles) and fair allocation (orange triangles) do not change with

the increase in resources, and the tradeoff stays constant. This
is because the ratio of group costs remains the same for both
the efficient and fair allocations and is a direct application
of Corollary 2. Again, the underlying efficient allocations
in the two figures are exactly the same. However, conclusions
drawn from the two figures would differ vastly and could lead
to different choices. For example, by only looking at Fig. 3d,
we could infer that the addition of resources has no effect on
the fairness of the efficient allocation. Conversely, measuring
efficiency with relative fairness (Fig. 3b) shows the increase
in fairness comes at a low cost of efficiency with rising re-
sources, which we view as a more reasonable reflection of
the situation.

The key takeaway is that seemingly small technical deci-
sions, such as the choice to measure fairness violations in
relative vs. absolute terms, can have substantial effects on
the nature of the efficiency-fairness tradeoff with the change
in resources and that these effects can be understood through
the lens of homogeneity. In Appendix B, we perform a sim-
ilar analysis for need-based utilities (linear so homogeneous
of degree 1), and observe again that such technical choices
have important consequences.

7 Empirical Study: Chicago Food Inspections

Now, we explore a real-world scenario where noise and other
factors mean utility and objective functions do not precisely
satisfy the definition of homogeneity. More broadly, this set-
ting is much richer than our stylized examples (e.g. it has nine
groups). Our findings from the empirical study of the Chicago
food inspections dataset support our insights about the effect
of resources on the efficiency-fairness tradeoff and choice of
objectives, even when our assumptions hold imperfectly.

Food inspections are part of the services provided by lo-
cal governments and involve agents (or sanitarians) visiting
food establishments and evaluating the conditions as per food
safety code [Chicago Department of Public Health, 2023].
The agents’ objective is to identify and help correct any criti-
cal violations of the food code, as the critical violations pose
the highest risk of producing conditions that might result in
a foodborne illness. The primary dataset we explore contains
more than 18,000 records of inspections done by the agents
from the Chicago Department of Public Health (CDPH) over
four years, from September 2011 to October 2014 and is pub-
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Figure 4: Efficiency-Fairness tradeoffs correspond to various amounts of resources (shown in the legend) for the Chicago Food inspection
dataset. Error bars represent standard error from 16-fold cross validation.

licly accessible on Chicago Data Portal5. Prior studies have
used the dataset to train a machine learning model that pri-
oritizes the inspections with a higher likelihood of resulting
in critical violations [Schenk Jr., 2015; Kannan et al., 2019;
Singh et al., 2022]. The model outputs a score that is used to
order inspections from the highest score to the lowest to get a
schedule that aims to find the critical violations early.

We describe our methodology in detail in Appendix C, in-
cluding how we define utility and cost functions based on the
outcome of time to detect critical violations, how we choose
inspection schedules corresponding to efficient and fair al-
locations, and how we simulated creating these inspection
schedules with varying numbers of agents available to con-
duct inspections. This allows us to create an analogue of
Fig. 3 derived from a real application, shown in Fig. 4.

Comparing Fig. 3a to Fig. 4a, we see they are consistent
in that the increase in resources makes the tradeoff between
efficiency and fairness smaller. One key difference from our
stylized example in Fig. 3a is that the fair allocation does not
achieve the highest possible absolute fairness. This can be
explained by the two-step scheduling process: first the ML
model is used to get the likelihood score, and then the score
is used to order the inspections. However, the model is not
aware of the true utility of the scheduling steps and can not
be optimized to achieve equal group utilities ex-post. Nev-
ertheless, the figure still presents a strong argument for the
addition of resources as a way to jointly improve fairness as
the tradeoff between the two becomes smaller and the number
of agents grows.

Next, we observe the change in tradeoffs when measur-
ing the relative fairness instead of absolute fairness, shown in
Fig. 4b. The plot reflects our observations from Fig. 3b, the
efficient allocation gets closer to the fair allocation as the re-
sources increase with a seemingly smaller benefit of choosing
the fair solution under relative fairness than under absolute
fairness. The caveat about the fair allocation being unable
to achieve perfect fairness still shows up here. In contrast to
absolute fairness, relative fairness might lead to the conclu-
sion that even with a low number of resources, the system
is already quite fair (note the different scales on the x-axes),
and in general, choosing efficient rather than fair allocations

5https://data.cityofchicago.org/

appears much more appealing.
We illustrate the effect of resources on a minimizing so-

cietal cost function along with both – absolute and relative
fairness in Figs. 4c and 4d, respectively. Like the example
in Fig. 3c, Fig. 4c shows the tradeoff to be shrinking as the
resources are added for efficient and fair allocations. We note
that the fair allocation does not achieve perfect fairness in this
case as it is presented with the same challenge of finding out
the true utilities a priori as when using the maximizing effi-
ciency case (Figs. 4a & 4b). Fig. 4d echoes the findings and
limitations of using cost and relative fairness together from
Fig. 3d. As the resources increase, the cost of both the effi-
cient and fair allocations decreases. But similar to Fig. 3d,
and despite the added complexity of the real scenario, the
Fig. 4d tradeoff largely does not change, as predicted by ho-
mogeneity. Once again, we could come to the wrong conclu-
sions if we were to choose this combination of efficiency and
fairness measures. In this application, both cost and relative
fairness individually pose plausible choices, but their combi-
nation could lead to adverse decisions.

8 Conclusion

We have argued for considering the effect of resources on
the efficiency-fairness tradeoff and provided several insights
about the way modeling choices can influence decisions. In
particular, we examined how the choices of defining utility
functions in terms of need or outcome, defining fairness in
absolute or relative terms, and representing goals as benefits
or costs. We have seen in both stylized examples and a sce-
nario derived from a real dataset that these technical modeling
choices can lead to very different conclusions about the trade-
off between efficiency and fairness and the way it changes
with the addition or removal of resources. Furthermore, these
differences are predictable and can be understood through the
lens of homogeneous functions. We do not provide reductive
advice that there is a single “correct” choice: these decisions
depend on details of the application domain and the values
of those affected. But our work highlights the importance
of thinking about them and provides a framework for under-
standing their consequences, particularly in the context of im-
portant societal decisions about resource allocation.

https://data.cityofchicago.org/
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A Effect of Resources on Price of Fairness
Quantifying the tradeoff between efficiency and fairness is
a well-studied problem. We have shown the tradeoff as
the Pareto fronts over maximizing and minimizing efficiency
functions and absolute and relative fairness functions. An-
other popular albeit concise representation of this tradeoff is
the Price of Fairness (PoF) [Bertsimas et al., 2011; Donahue
and Kleinberg, 2020]. PoF is defined6 as the ratio of the max-
imum utility from the sets of all solutions S to the maximum
utility from the set of fair solutions F ⊆ S, given as:

PoF =
maxs∈S efficiency(s)
maxs∈F efficiency(s)

(7)

Note this definition computes the ratio of ‘efficiency’ of
the most efficient solution and the fairest solution to specify
the tradeoff. Applied to the example we present in Fig. 1, the
definition could be rewritten as:

PoF =
max(E(r))

maxr∈argmaxF (r) E(r)
(8)

By looking at Fig. 1, we can say that the choice of picking a
certain amount of efficiency to trade for fairness would have
vastly different consequences for the stakeholders in the three
scenarios. However, if we just considered the PoF for the
curves, it is uninformative since the ratio of the highest point
to the lowest point on the Y-axis (efficiency) does not change
as E(r) is scaled. Therefore, if the choice were to be made
solely by looking at the PoF for the three curves, the decision
maker would not see the difference between the three tradeoff
curves.7

The invariance of PoF for any change in resources can
easily be explained by considering the homogeneity of the
function. As stated in Corollary 2, ratios are homogeneous
functions of degree 0 and, therefore, do not capture the ef-
fect of scaling by a constant factor. This example presents
a setting where, while the PoF provides useful information
about the implications of a commitment to fairness, it alone
does not portray the complete picture necessary for compar-
ing efficiency-fairness-resources tradeoffs.

B Tradeoff Measures for Linear Utilities
In §6, we explore how the expression of efficiency and fair-
ness with outcome-based (inverse) group utilities changes the
efficiency-fairness-tradeoff and, consequently, the inferences
from the allocation methods. In this section, we present a
similar analysis but with need-based (linear) utilities.

Fig. 5 presents the tradeoff for efficiency, fairness, and re-
sources when using efficiency and relative fairness. Although
the efficiency of both allocation methods increases with the

6The two papers actually use slightly different definitions,
though similar in spirit. Interestingly, they differ in a way that can
affect decisions. We use the latter.

7Donahue and Kleinberg [2020] more generally allow a bounded
amount of unfairness, but similar examples can be constructed. The
key point remains that while the PoF can give us some information
about the Pareto frontier, it does not tell us how to choose a point on
it.

0.0 0.2 0.4 0.6 0.8 1.0
Relative Fairness 

2

4

6

8

10

Ef
fic

ie
nc

y 

Efficient allocation
Fair allocation

Figure 5: The three-way tradeoff curves for need-based (linear)
group utilities measuring efficiency (Y-axis) and relative fairness (X-
axis). Higher values for both are better.
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Figure 6: The tradeoff curves for linear group utilities considering
cost (Y-axis) and absolute fairness (X-axis). Lower cost and higher
absolute fairness values are better.

increase in resources, it does not affect the fairness of effi-
cient and fair allocation. Unlike Fig. 3d, this is an accurate
reflection of the situation: no matter how many resources we
have, giving them all to one group (the efficient solution) is
perfectly unfair. This example is somewhat degenerate in this
regard.

Now, to transform the linear utilities given in Eq. 1 into a
minimizing cost function, we subtract the group utilities from
a constant large enough to keep the utilities non-negative, and
g1 remains the privileged group. We write them as:

cg1(r) = β − r , cg2(r) = β − 2r . (9)

Using these utilities, we plot the Pareto front for cost and
absolute fairness in Fig. 6. We notice a steady decline in the
fairness measure, along with the reduction in cost for the ef-
ficient allocation with the addition of more resources. The
fair allocation retains the highest absolute fairness but also a
higher cost when compared to the efficient allocation at the
same level of resources.

Finally, we show the tradeoff curve for cost vs. relative
fairness in Fig. 7. Similar to Fig. 6, the ends of the Pareto
front widen as the efficient allocation gets less fair and cost-
effective, while the fair allocation stays perfectly fair and with
a lower reduction in cost as the resources are added. However,
relative fairness portrays that efficient allocation continues to
have a higher level of fairness for fewer resources than when
measuring absolute fairness in Fig. 6. Since linear costs are
not homogeneous due to the constant β, Fig. 7 does not ex-
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Figure 7: The tradeoff curves for linear group utilities consider-
ing the cost (Y-axis) and relative fairness (X-axis). Lower cost and
higher relative fairness values are desired.

hibit the problematic behavior we saw in Fig. 3d.

C Methodology for Empirical Study
Food inspections are one of the essential public services pro-
vided by a local jurisdiction to ensure public safety. Typ-
ically, food inspection involves agents (or sanitarians) who
visit food establishments and check the food preparation en-
vironment and food handling practices against a food safety
code [Chicago Department of Public Health, 2023]. When
observed, the agents can cite the food establishments with vi-
olations, which are of three classes: minor, serious, and criti-
cal, with critical violations being the strongest signal of food
resulting in an illness. Therefore, if an establishment is found
with a critical violation, it fails the inspection. The agents’
objective is to inspect the establishments that have a high like-
lihood of failing an inspection early, thereby, preventing the
establishment from serving harmful food for long.

Efficient Allocation: To schedule the inspections with
high likelihoods of critical violation, the Chicago Depart-
ment of Public Health (CDPH), along with the help of in-
ternal and external organizations, developed a machine learn-
ing (ML) model to predict a score for establishments around
the city [Schenk Jr., 2015]. The ML model was trained on
a dataset of more than 18,000 inspections recorded over four
years by the department agents from Sep 2011 to Oct 2014
and made publicly available8. The dataset contained addi-
tional information like the weather on the inspection day, re-
ports of crime and sanitation in the neighboring area. The de-
partment anonymized the identity of the agent who conducted
each inspection in the dataset by clustering the agents into
groups. The groups were created based on the agent critical
violation rate. Critical violation rate can be computed as the
ratio of the number of inspections with critical violations to
the number of inspections completed. This signals how strict
is an agent group. There were six of these groups, named af-
ter Chicago Transit Authority train lines – Purple, Blue, Or-
ange, Green, Yellow, and Brown. Using all such features, the
ML models output a likelihood score for the inspection. The

8Updated dataset: https://data.cityofchicago.org/
Health-Human-Services/Food-Inspections/4ijn-s7e5/about data.
Fixed dataset used for the study: https://github.com/Chicago/
food-inspections-evaluation

score is then used to order the inspections given a time period,
which creates the inspection schedule. To evaluate the model,
CDPH had a two-month test period where agents did the in-
spections as usual, and then the model predicted scores for
these inspections without the ground truth. Compared to the
random schedule by agents, the schedule obtained by order-
ing the inspections based on the model predictions reduced
the average time to detect critical violations by 7 days in the
simulation study. We use this model as the efficient allocation
in our setting. More details about the dataset and the experi-
mental setup are described in the work of Schenk Jr. [2015]9.

Fair Allocation: Singh et al. [2022] studied the impact
of the efficient allocation with geographic fairness across
nine regions of the city in mind. They found that the pro-
posed ML model learns the signal from the agent group as
a proxy for the likelihood of finding a critical violation and
orders the inspections conducted by the most strict group first
while delaying the others. Since there is a correlation be-
tween the agent groups and geographic regions, the benefit
of scheduling some inspections early at the cost of others
puts some regions at a disadvantage. They propose several
methods to create a fair schedule by treating the agent groups
as the protected group for fairness-aware ML models. They
also propose two methods that modify the way the predicted
score is used to create the schedule while achieving Pareto-
dominance on the efficiency-fairness tradeoff. We adapt their
‘Sanitarian-blind’ approach as our fair allocation. The ap-
proaches are described in detail in Singh et al. [2022]10.

Experimental Setup: Given the original dataset, we want
to explore the effect of change in the number of agents on the
efficiency and fairness of the proposed solutions. Singh et al.
describe the inspections as being conducted by “around three
dozen” agents. Using this, we calculate the number of inspec-
tions completed per agent per day based on the assumption of
35 agents. Then, for any number of agents, we can compute
the number of days required to complete a schedule. We vary
the number of agents between {n ∈ Z | 2 ≤ n ≤ 35} to
get a wide range for observing the effects on objectives. We
assume that each agent roughly conducts an equal number of
inspections, and we use a uniform distribution to assign in-
spections to agents. We further assume that the number of
daily inspections stays uniform. Under this assumption, we
use stochastic rounding to split inspections into days. We
use this process for all numbers of agents and simulate an in-
spection schedule. Since the dataset contains a fixed number
of inspections to be completed, the change in the number of
agents changes the schedule length – fewer agents would take
longer to complete the same amount of inspections and vice
versa. For evaluation, we use 16 two-month test windows
(following Singh et al. [2022]) for cross-validation.

We use outcome-based group utilities and costs. For costs,
we follow Schenk Jr. and define the cost of the group as
the average number of days that elapse before restaurants
with critical violations in the group’s region of the city are
inspected. Thus, if all were inspected on the first day that

9GitHub: https://github.com/Chicago/
food-inspections-evaluation

10GitHub: https://github.com/shubhams/eaamo-fair-food

https://data.cityofchicago.org/Health-Human-Services/Food-Inspections/4ijn-s7e5/about_data
https://data.cityofchicago.org/Health-Human-Services/Food-Inspections/4ijn-s7e5/about_data
https://github.com/Chicago/food-inspections-evaluation
https://github.com/Chicago/food-inspections-evaluation
https://github.com/Chicago/food-inspections-evaluation
https://github.com/Chicago/food-inspections-evaluation
https://github.com/shubhams/eaamo-fair-food
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Figure 8: The plots show the efficiency (left Y-axis) and the absolute
fairness (right Y-axis) using the efficient allocation from Schenk Jr.
[2015]. Both measures increase with the increase in agents (re-
sources). Error bars represent the standard errors.
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Figure 9: The plot showing efficiency and fairness, similar to Fig. 8
but uses relative fairness on the right Y-axis. Higher values on both
Y-axes are better. Error bars represent standard error.

cost would be zero while if all were inspected on the last day
of the second month it would be approximately sixty. With
fewer than 35 agents it would take more than two months to
complete all inspections, making the maximum possible cost
correspondingly larger. For utility, we instead compute the
number of days in the inspection window after a restaurant
with a critical violation is inspected. This is equivalent to
subtracting the cost from the maximum window length for
any amount of agents. Thus, if all were inspected on the first
day, that utility would be approximately the time it takes 2
agents to complete the schedule (∼1200 days), while if all
were inspected on the last day with two agents it would be
zero.

Verifying Objectives: Keeping the allocation policy fixed
to the efficient allocation [Schenk Jr., 2015], we plot the ef-
ficiency and absolute fairness in Fig. 8. The figure shows
the effect of change in the number of agents (resources) on
the efficiency and absolute fairness separately. At lower lev-
els of resources (between 2-10 agents), both efficiency and
fairness show a rapid increase, and slow down approaching
the high resources levels (30-35 agents). This shows that the
group utilities resemble the outcome-based utilities (Eq. 4).
We show the same allocation by using relative fairness in
Fig. 9. Since relative fairness is measured on [0, 1] interval,
it appears that efficient allocation achieves higher fairness at
lower resource levels and stays comparatively the same as the
resources increase. This confirms the objective functions we
are using in this setting are good approximations of the effi-
ciency (Eq. 2) and fairness functions (absolute and relative,
Eqs. 3, 5) used in the stylized examples.
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