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Abstract
The inspection of retail food establishments is
an essential public health intervention. We dis-
cuss existing work on roles AI techniques can
play in food inspections and resulting fairness
and interpretability challenges. We also examine
open problems stemming from the complex and
dynamic nature of the inspections.

1. Introduction
Foodborne illness is a serious public health issue in the
United States, resulting in an estimated 48 million illnesses
and 3,000 deaths annually (Scallan et al., 2011). Food
served in retail settings have been associated with a sig-
nificant number of foodborne illness outbreaks. As such,
the inspection of retail food establishments, which include
restaurants, grocery stores, caterers, school cafeterias, and
even vending machines, is an important public health inter-
vention to reduce the spread of foodborne illness.

Every food safety inspection generates data: the properties
of the establishment, the sanitarian performing the inspec-
tion, and the details of the result—what specific violations
were found and the inspector’s remarks in support of the
violations. This data results from a complex process involv-
ing multiple stakeholders (policy makers, restaurant owners,
the public) and operating via many organizations at a range
of scales (from national organizations to local public health
departments). There are opportunities to use AI to improve
food safety across the system: scheduling inspections for a
limited pool of inspectors; training food workers, supervi-
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sors, and sanitarians; and aiding regulatory decisions on the
inspection process and outcomes.

Fairness considerations emerge immediately. For example,
in Chicago, the reported critical violation rate for some
sanitarians is 16 times higher than others (Schenk Jr et al.,
2015). On the other hand, assignment of sanitarians to food
establishments is largely based on location proximity(see
§3). Thus, naive inspection scheduling policies that only
consider predicted violation rate as a proxy for public health
outcomes produce discriminatory outcomes by prioritizing
inspection of restaurants in a few regions.

Retail food inspection is a useful application for study of
fairness in sequential decision-making. Inspections oc-
cur often—Chicago performs tens of thousands of inspec-
tions per year—and the generated data is publicly available.
States and municipalities are interested in prioritizing lim-
ited resources to minimize potential risks to the public health
in a fair manner. However, there exist disagreement regard-
ing the fairness objective to account for. Historic decisions
may reflect important individual and group fairness consid-
erations that should be understood and integrated into future
decisions.

In this paper, we explain the food inspection process, discuss
prior computational work on making the process more fair,
and outline future research directions. In §2, we describe the
regulation and the use of predictive modeling for scheduling
food inspections Schenk Jr et al. (2015). §3 describes how
such models can lead to unfairness. §4 we discuss three
challenges that arise in the real dynamic inspection process:
designing fair algorithms for dynamic scheduling, assigning
heterogeneous inspectors, and the use of proxies for public
health. In §5, we consider potential biases in individual
inspectors and describe a previous work on detecting and
counteracting bias in written justifications. In §6, we dis-
cuss, the multi-stakeholder aspect of fairness in the food
inspection process and discuss how fairness notions should
account for this.

2. Background on Inspection Scheduling
In the US, the Food and Drug Administration (FDA) re-
leases the FDA Model Food Code to outline food retail
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practices and provide guideline for retail food safety inspec-
tion. The adaption and enforcement of the Food Code is
left to state and local governments. This results in a consid-
erable variability in the inspections conducted in different
states. This includes differences in the nature and format
of data gathered, what constitutes a violation, and the fre-
quency and nature of inspections (which include routine can-
vass inspections where establishments are inspected once
or twice a year, inspections triggered by complaints or ill-
nesses, follow-up inspections, and additional state-specific
inspection types). Data generated from retail food safety in-
spections has been used to evaluate and enhance inspection
policies and training requirements across jurisdictions (Jin
et al., 2020). In the most relevant prior work, Schenk Jr et al.
(2015) built a predictive model to prioritize scheduling food
inspections conducted by the Chicago Department of Public
Health (CDPH).1 The model predicts the outcome of a can-
vass inspection, using historical inspections as supervision.
The features used include details about the establishment
(e.g., whether it has an alcohol license), the sanitarian who
conducted the inspection, and information about the out-
comes of past inspections. To protect individual identities,
the three dozen sanitarians were clustered by their past crit-
ical violation rate, the empirical percentage of conducted
inspections that resulted in a critical violation. These are
violations which, if left uncorrected, are more likely than
other violations to directly contribute to food contamination
or illness.

Schenk Jr et al. (2015) seek to detect critical violations as
quickly as possible. Thus, the model predictions are used to
prioritize inspections in decreasing order of risk. Under the
assumption that critical violations are detectable at any time
during the 60-day testing window, the average time to detect
a critical violation can be computed for any schedule. Risk-
prioritized schedules were found to detect critical violations
one week faster, on average, when applied to the two-month
test set. The Schenk Jr et al. (2015) analysis has been
revisited by Kannan et al. (2019) and, specifically from a
fairness perspective, by Singh et al. (2021).

3. Fair Schedules
Singh et al. (2021) quantify and assess the fairness of a
schedule for food inspections. We focus on their interpre-
tation of Equal Opportunity (Hardt et al., 2016) which is
defined as:

E[T |A = ai, Y = 1] = E[T |A = ai+1, Y = 1] (1)
s.t. 0 ≤ i < n .

1While we are aware of other work on predicting inspection
results and the biases this may introduce (Altenburger & Ho, 2019;
Kang et al., 2013; Liu, 2020), this is the only example we are aware
of where predictions have been linked to inspection schedules.

Sanitarian
Cluster

Critical Violation
Rate

Purple 40.83%
Blue 25.53%
Orange 13.76%
Green 9.68%
Yellow 5.94%
Brown 2.5%

Table 1. The critical violation rate for different inspection clusters.
Clusters are named after the lines of Chicago rail transit system
similar to (Singh et al., 2021).

In the equation above, T denotes the time to complete a food
inspection, Y indicates the result of a food inspection, and
A indicates a categorical protected attribute.Equation (1)
defines a schedule as fair if the expected detection time for a
critical violation (Y = 1) is same across different protected
groups.

Singh et al. (2021) use restaurants’ Zip codes to assign them
to nine regions of the city. Their analysis shows that the
schedule suggested by the CDPH’s substantially violates
fairness based on Equal Opportunity. Moreover, for sev-
eral regions of the city, this schedule, results in detecting
the critical violations even later than the default setting. A
closer look at coefficients of the logistic regression model
used by CDPH (Schenk Jr et al., 2015) shows that cluster
label of the sanitarian conducting the food inspection is a
key feature (Kannan et al., 2019) for the model. Significant
variation in the detected critical violation rate is observed
for different sanitarians groups (see Table 1). The detection
rate is as much as 40.8% for the Purple cluster and as little
as 2.5% for the Brown cluster! Singh et al. (2021) demon-
strate that this difference is due to sanitarian behavior rather
than other possible confounding factors and using sanitarian
cluster as an input feature causes the resulting unfairness.
They explore two broad classes of approaches to remedy
the unfairness. First, they explore approaches that involve
retraining the model without using sanitarian as a feature
and using various fairness-aware classification algorithms
(Zafar et al., 2017; Rezaei et al., 2020; Krishnaswamy et al.,
2021). These approaches only offer a partial solution since
they mitigate the unfairness associated with the sanitarian
clusters to an extent. Second, they explore using approaches
based on how the risk prediction is used. They find that
using the prediction scores to reorder inspections within
sanitarian clusters offers the fairest schedules.

The observed variation in how the inspection is conducted
in different regions is not unique to Chicago (Jones et al.,
2004). This variation presents a number of challenges and
opportunities for fairness research that will be discussed
in §4 and §5.
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4. Dynamic Inspection Scheduling
Prior work has looked at food inspection scheduling as a
static problem in which fixed number of inspections are
conducted in a fixed time window. However, this problem
has a dynamic nature. This poses at least three distinct
(though interacting) open challenges. First, how can we
design fair dynamic scheduling algorithms? Second, how
should we assign sanitarians to inspections? Third, since
violations are proxies for public health outcomes, how can
we avoid feedback loops?

Schenk Jr et al. (2015) trained classification models and
used the posterior probability of a critical violation to rank
food establishments based on potential risk for public health.
Their model prioritized inspecting establishments that pose
a higher risk. However, they did not account for equal
distribution of benefits obtained by this rescheduling. Better
results may be possible by using ideas from the literature
on fair rankings (Singh & Joachims, 2019; Zehlike et al.,
2021) or the literature on fair classification in the context
of larger systems (Dwork & Ilvento, 2018). However, this
neglects opportunities to adjust the frequency and timing of
inspections over longer periods of time. Ideally, we could
inspect riskier establishments more frequently as well as
sooner. Existing inspection regimes do this in coarse ways,
with a small number of “risk levels” based on the nature of
the food service and differing inspection frequencies. This
could be done in a finer-grained manner using automated
and data-driven methods. However, the objectives, both for
efficiency and fairness, are unclear.

An alternative approach might be to treat scheduling as a se-
quential decision problem and apply, e.g., bandit algorithms.
Previous work has looked at designing fair algorithms of
this flavor (Joseph et al., 2016; Wen et al., 2021; Hossain
et al., 2021) and studied issues of overall fairness in compar-
ison to local or immediate fairness (D’Amour et al., 2020;
Emelianov et al., 2019; Dwork et al., 2020; Liu et al., 2018).
However, it is not clear how retail food safety inspections
can be modeled as a bandit. There is a significant gap be-
tween existing theory and a deployment-ready model.

Regardless of the approach, an implementable solution to
the dynamic scheduling problem should consider the limited
capacity for a sanitarian to conduct inspections in a day
both in terms of the time needed to conduct the inspections
themselves and the time needed to travel from inspection to
inspection. Efficiency or fairness gains which do not respect
these constraints may be illusory.

Table 1 indicates there are substantial differences among
the critical violation rates of different inspectors. The dif-
ferences between sanitarians could be modeled by different
severity thresholds that lead to citation of a violation. In
this approach, what a violation “means” varies between

sanitarians. Therefore, we might estimate a counterfactual
“sanitarian-independent” violation probability, as is done
when predicting clicks in search advertising (Graepel et al.,
2010) and has been explored in the literature on causal mod-
els in fairness (Kilbertus et al., 2017). More detail may
be desired—prior work has found that factors such as the
outcome of a previous inspection and the position of an
inspection in an inspector’s daily schedule may significantly
impact the detection of violations in an inspection (Ibanez
& Toffel, 2020). Furthermore, violations related to keeping
food at a proper temperature may be more prone to occur
on warm days (Kannan et al., 2019).

A key challenge in planning inspections is that critical vi-
olations are only a proxy for the true goal of identifying
and fixing risks to public health. The use of such proxies
is common and has caused notable issues in other domains
(for example the use of arrests as a proxy for crime (En-
sign et al., 2018; Keymanesh et al., 2020)). The risk of
feedback loops has been pointed out in both this and other
domains (Kannan et al., 2019; Chouldechova et al., 2018).
In addition to leading to sub-optimal public health outcomes,
this can be viewed as an issue of unfairness to restaurants
(Kannan et al., 2019). Similar concerns arise from the use
of other proxies such as customer complaints, which re-
flect both consumer biases (Altenburger & Ho, 2019) and
biases due to under-reporting (Liu & Garg, 2022). Data
from surveillance of foodborne outbreaks can potentially
provide a signal of inspection effectiveness that is separate
from inspection outcomes.

5. Fairness of Justification
Violations are not the only outcomes produced by retail food
safety inspections and the scheduling of inspections is not
the only part of the process in which AI can play a role. In
the current inspection form, sanitarians are required to report
their observations and justifications for any reported viola-
tion. A fair inspection should both have a fair outcome and
be fairly justified (Carvalho et al., 2019)—the justification
should include enough information to explain the outcome
and should be consistent across establishments. Keymanesh
et al. (2021) focused on the problem of (un)fairness of jus-
tifications. Examples of unfair justifications include those
that do not reflect the guidelines, use racially coded lan-
guage, display implicit bias, or apply different standards to
different establishments (Keymanesh et al., 2021).

To detect and counteract the unfairness in justification, Key-
manesh et al. (2021) propose a text pre-processing approach
called FAIRSUM. Given a collection of n potentially biased
inspections {(Xi, Yi, Ai)}ni=1 where X denotes a textual
report written by a sanitarian to provide evidence or jus-
tify an outcome Y and A indicates one or more protected
variables, they extract a fairly-justified summary {Xi

′}ni=0
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such that X ′ provides sufficient information to predict and
justify Y and X ′ is independent of protected variable A.
To achieve this, they use a multi-task neural model and an
attribution mechanism to compute a utility score ui and a
discrimination score di for each sentence in the justification.

First the model is trained for decision prediction and mem-
bership identification. Next, they measure the salience of
each sentence in predicting outcome Ŷi and protected at-
tribute Âi using integrated gradients (Sundararajan et al.,
2017). They include high-utility and low-bias sentences in
the fairly-justified summary of the explanations. The final
inclusion score si for each sentence is computed as

si = σ(u)i − α× σ(d)i, (2)

where σ indicates the Softmax function and is applied to
generate a distribution over input sentences, and α is a hyper-
parameter that controls the utility-discrimination trade-off.
Higher values of α correspond to removing more informa-
tion about the protected attribute from the input justification.
The goal is to identify and remove arguments that are not
useful for decision prediction, except through the prediction
of the protected attribute. The subtraction operation ensures
that such arguments get a small inclusion score si. Finally,
only sentences with a positive final attribution score are
included in the summary X ′.

Enhancing the fairness of justification for retail food inspec-
tions could improve inspection quality in multiple ways,
including addressing several challenges discussed in §4:

• Bias detection: Auditing sanitarians for bias to ensure
the inspection process is consistent across different neigh-
borhoods and sanitarians.

• Better training to avoid future biases: Improving the
training of sanitarians by explaining cases of unfair his-
torical decisions or justifications in a data-driven manner.

• Better explanation for stakeholders: Attributing the
inspection outcomes to specific violations reported by
sanitarians. This can help explain the outcomes to stake-
holders and assist restaurant owners in prioritizing re-
sources in order to reduce the risk to public health.

• Better data quality: Removing unjustified claims or
biased reasoning from the data facilitates training fair
automated models for decision-making.

6. Multi-Stakeholder Fairness
In contrast to much of the literature that focuses on the
fair treatment of individuals, the establishments that are
inspected are typically businesses or other entities in which
many individuals have a stake. So far, we have discussed
the challenges associated with fair scheduling of inspections
with respect to people living nearby the restaurants (§4) and
fair justification for the inspection results with respect to

restaurant owners (§5). These are examples of a broader
challenge of establishing definitions and metrics for fairness
in settings with multiple stakeholders.

Fair classification can be thought of as the problem of learn-
ing a classifier satisfying appropriate constraints from sam-
ples of the joint distribution of (X,Y,A), where X indicates
the input features, Y indicates the target variable (outcome
of a decision), and A is the protected attribute. The case
where the support of A is finite has been well-studied in
the literature (Calders et al., 2009; Hardt et al., 2016), and
some recent works have also proposed improvement to the
fairness notions for the real-valued case (Mary et al., 2019;
Jiang et al., 2021).

One way to capture the scheduling of retail food safety in-
spections would be to take the support of A to be probability
distributions. For example, consider a restaurant located in a
neighborhood with demographic distribution of 50% White,
30% Black, and 20% Hispanic. Existing fair classification
algorithms are generally not compatible with such heteroge-
neous protected attributes. This also poses thorny challenges
for the definition of fairness, including how to define the
relevant set of stakeholders, how to handle overlapping sets
of stakeholders, and how to capture fairness with respect to
subgroups of stakeholders. There is also a dynamic aspect
when viewed on longer timescales since the population of a
census block, ward, or neighborhood changes over time (as
people move or as the result of a redistricting process).

We may also wish to consider particular subgroups. Indi-
viduals from lower SES are disproportionately affected by
foodborne illnesses. They are also more likely to live in food
deserts and/or shop at different types of food establishments.
If these establishments are over-prioritized for inspection,
this may result in retail closures (due to violations or in-
creased compliance costs) that contribute to increased food
insecurity. If they are under-prioritized, violations may go
unnoticed, causing illness in a vulnerable population.

7. Conclusion
In this work, we examined retail food safety inspections as
a key application domain for fair AI techniques. We dis-
cuss several open challenges including (dynamic) inspection
scheduling, fairness of justification, and multiple stakehold-
ers. Governments conduct a number of other types of in-
spections including structural inspections of buildings, fire
safety, business licensing, and enforcement of environmen-
tal and accessibility regulations. Thus we believe retail food
safety inspections are an application domain that merits sub-
stantial attention in its own right; as an example of a number
of related domains; and as opportunity to explore fundamen-
tal fairness challenges related to deficiency of information,
dynamic decisions, and disagreement among objectives.
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