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ABSTRACT
Increasingly more and more videos are being uploaded on video

sharing platforms, and a significant number of viewers on these plat-

forms are children. At times, these videos have violent or sexually

explicit scenes (referred as child unsafe) to catch children’s atten-

tion. To evade moderation, malicious video uploaders typically limit

the child unsafe content to only a few frames in the video. Hence, a

fine-grained approach, referred as KidsGUARD
1
, to detect sparsely

present child unsafe content is required. Prior approaches to con-

tent moderation either flag the entire video as inappropriate or use

hand-crafted features derived from video frames. In this work, we

leverage Long Short Term Memory (LSTM) based autoencoder to

learn effective video representations of video descriptors obtained

from using VGG16 Convolutional Neural Network (CNN). Encoded

video representations are fed into LSTM classifier for detection of

sparse child unsafe video content. To evaluate this approach, we

create a dataset of 109,835 video clips curated specifically for child

unsafe content. We find that deep learning approach (1) detects

fine-grained child unsafe video content with the granularity of 1

second, (2) identifies even sparsely location child unsafe video con-

tent by achieving a high recall of 81% at high precision of 80%, and

(3) outperforms baseline video encoding approaches based on like

Fisher Vector (FV) and Vector of Locally Aggregated Descriptors

(VLAD).

CCS CONCEPTS
• Security and privacy → Social network security and pri-
vacy; • Information systems → Social networks; • Social and
professional topics→ Children; • Computing methodologies
→ Supervised learning by classification; Semi-supervised learning

settings;

1
Code and Dataset at https://github.com/precog-iiitd/kidsguard-sac
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1 INTRODUCTION
The creation and the consumption of videos on the web have in-

creased a lot over the last decade. Popular video sharing platforms,

like YouTube, receive one billion hours of video views. Given the

large-scale, content moderation and regulation as per the platform’s

guidelines becomes extremely challenging. From the user’s perspec-

tive, it becomes extremely critical when viewers are children, for

whom these video platforms have virtually become the television

[5]. Livingstone et. al. [22] highlight ‘kids in the online world get-

ting exposed to pornography’ as among the most prominent threats

to children. There are significant concerns that videos targeted for

children have violence or sexually explicit content [27] which we

refer as child unsafe content. There are laws, for instance, Children’s
Online Privacy Protection Act (COPPA ), which expect video shar-

ing platforms to adopt and enforce mechanisms for online safety for

children. Besides these norms, the presence of child unsafe content

on a video sharing platform decreases its reputation and viewer-

ship as it could potentially encourage parents to dissuade their

children from watching videos on such platforms. Consequently,

video sharing platforms employ a dedicated group of experts, use

automated mechanisms and rely on crowd-sourcing to perform

content moderation. Once detected, a video is typically made as

age-restricted or completely removed. Age-restricted videos have

reduced visibility and are ineligible for monetization on most video

platforms. As a result, putting child unsafe content sparsely (located

in only a few scenes in a video) is one common strategy adopted by

malicious video uploaders. There are many examples of such videos

(Figure 1a and Figure 1b) on YouTube which can be viewed even

with restricted mode2 enabled, thereby indicating that the existing

detection mechanisms are not working well. Further, it may be

observed that the number of subscriptions and number of views for

the video depicting sexually explicit content in Figure 1(a) is 2.6K

and 81K since its upload on 6 April, 2016 whereas, for another video

2
Restricted mode is a configuration setting on YouTube using which viewers can avoid

getting inappropriate content

https://github.com/precog-iiitd/kidsguard-sac
https://doi.org/10.1145/3297280.3297487
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(a) Video depicting nudity, uploaded since April 6, 2016 by chan-
nel with 2.6K subscribers and viewed 81K times.

(b) Video depicting violence uploaded since July 16, 2016 by
channel with 38 subscribers and viewed 3.5K times.

Figure 1: Videos (get played with restricted mode ON) depicting the presence of nudity and violence which have evaded detec-
tion.

depicting violence, the number of subscribers and views are quite

less (38 subscribers and 3.5K views). It is evident that the problem

persists irrespective of the uploader’s popularity and the video’s

popularity.

We address the problem by leveraging deep learning based video

representation that would help in the fine-grained detection of child

unsafe video content.We refer our proposed solution asKidsGUARD.
Two types of child unsafe content are studied, one, which is sexually

explicit and second, which contains violence. Put together, and we

have three unsafe classes namely sexual, violent and both while all

the rest is considered safe. Prior approaches [3, 7, 8, 10, 21, 30, 40]
have addressed this problem using hand-crafted features at the

frame level. In recent years, deep neural network based approaches

[13, 25, 32, 44, 47] have emerged to solve problems in domain of

image and video processing. Recurrent Neural Network (RNN)

based on Long Short-Term Memory (LSTM) [9] memory units have

been found to be very useful for capturing the context in a given

sequence [36, 42]. However, their application to the critical problem

of detection of child unsafe content has been underexplored. Our

methodology is inspired by the work of Srivastava et. al. [35] which

proposes an unsupervised video representation model. We build

on top of their work by adapting their model for detecting child

unsafe video content. We leverage LSTM autoencoders to learn

video representations by taking video descriptors obtained from

VGG16 Convolutional Neural Network (CNN). After conducting

exhaustive experiments on 109,835 video clips, we find that fine-

tuning of LSTM autoencoder works best at video clip size of one

second and hence, it is apt for fine-grained level for detection of

sparse child unsafe video content. Furthermore, to address the issue

of sparsely located child unsafe video content, we find that the

approach achieves a high recall of 81%, while at the same time,

maintaining a high precision of 80%. The approach outperforms

other baseline approaches of video representations based on Fisher

Vector (FV) [31] and Vector of Locally Aggregated Descriptors

(VLAD) [11].

Significant findings from work are as below:

• We create, first of its kind, a video dataset comprising of

109,835 video clips specifically targeted towards children,

each of length one second annotated for violent and/or sex-

ually explicit content. We plan to make this dataset publicly

available for future research.

• We perform fine-grained detection of video content so that

only portions of child unsafe content are pruned from long

duration videos, rather than flagging the entire video as

inappropriate for children.

• We propose a deep learning based video representation tech-

nique for fine-grained detection of child unsafe video content

and perform an extensive evaluation.

Our work is helpful for video sharing platforms to weed out sparsely

present child unsafe content without taking down the entire video

or putting age-restrictions on videos. It also helps in building

parental control solutions through the browser extensions wherein

child unsafe portions are blurred so that a child can watch video

safely.

2 RELATEDWORK
The problem of detecting child unsafe content in videos can be

cast into video classification or event detection problems. Most of

the earlier approaches extract hand-crafted features at the frame

or video level to identify discriminative patterns that aid in the

detection of child unsafe content. Detection of motion features

[8, 10] and skin color [7] have been used to flag indecent and porno-

graphic content. Multi-modal approaches which fuse audio with

video along with motion and skin color features have also been

explored. Liu et. al. [20] propose fusing of audio signals (words)

in addition to features constructed from video frames. Ulges et. al.

[40] propose a multi-modal approach that combines features from

audio, video and skin color. Liu et. al. [21] extend their earlier work

of fusion by developing a framework that fuses audio features along

with features obtained from video content for improved detection

of indecent video content. Visual feature extraction and features

derived from the periodicity of the audio stream are used to detect

illicit content in video frames in the work by Rea et. al. [30]. Cae-

tano et. al. [3] propose an approach using a novel video descriptor

which comprises of low level local features along with BossaNova
which is a mid-level representation of video.

Data-driven approaches which extract spatio-temporal features

from video frames followed by application of conventional machine

learning algorithms have been tried. Ochoa et. al. [26, 39] propose

a machine learning based approach for classifying video genre for
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Figure 2: The left half of the figure shows the video preprocessing stages, where a video is divided into clips and a clip is divided
into frames. Those frames are fed into pretrained VGG16 CNN to get feature vector. The right half shows the architecture of
the LSTM Autoencoder, comprising of the encoder and the decoder. The encoder takes a sequence of video descriptors, di, jt
up to T time steps and learns a video representation. The decoder learns to reproduce the input sequence using the learned
weights from the encoder and produces the reconstructed sequence as ˆd

i, j
t in the reverse order of time.

adult content. Jung et. al. [12] use the spatio-temporal motion pat-

terns which are converted into one-dimensional signal followed by

color-based region segmentation as a feature for real-time detection

of indecent videos. Tang et. al. [38] propose Pornprob, a framework

to detect pornography in videos. The framework is a combination

of unsupervised clustering approach of LDA along with SVM based

supervision to detect pornographic content in videos. Kaushal et.

al. [14] use the meta-data of YouTube videos to construct features

which were fed to machine learning classifiers to identify child

unsafe content. Three kinds of meta-data features used were based

on video, comments, and uploaders. After content detection, the

authors performed a detailed characterization study of their up-

loaders and found closely linked communities of unsafe and safe

content promoters. Lopes et. al. [23] use visual features (BOVF)

based approach to detect indecency in videos. Authors claimed that

their approach works well for even low sampling rates. Lee et. al.

[19] propose a novel multi-level hierarchical system for detection

of objectionable videos comprising of three phases involving hash

signatures, features based on single frame and set of frames.

Significant advances in deep neural networks are being made.

Karpathy et. al. [13] performe a large-scale video classification of

over one million YouTube videos among 487 classes using CNNs.

Multiple connectivity approaches of CNN were explored to exploit

spatio-temporal features across video frames. This work was fol-

lowed by Yue-Hei Ng et al. [47] which explores information across

longer time periods of a video for classification. They use recurrent

neural network based on LSTM which are placed at the output of

CNNs to classify videos better. Ngiam et. al. [25] in their work apply

deep learning over multiple modalities namely image, video, text,

and audio. Wu et. al. [44] propose a deep learning framework in a

hybrid configuration for classification of video which can capture

static as well as short-term motion in videos using two different

CNNs. The outcome of these two CNNs are fed into LSTM pipeline

to capture the temporal clues. Simonyan et. al. [32] build a deep

learning pipeline to detect action among videos. More specifically,

they train CNNs to distinguish still scenes from those having mo-

tion. For capturing the context in a given sequence of frames in

a video, RNNs based on LSTM memory units have been explored

[36, 42]. Most recently, Wehrmann et. al. [43] have achieved best

results using RNN-LSTM approach on Pornographic Database.
3

Application of RNN-LSTM approach to the critical problem of fine-

grained detection of child unsafe video content has not been ex-

plored yet, which is our focus in this work.

3 METHODOLOGY
We divide the problem of detecting child unsafe content into the

following two subproblems:

Subproblem 1. Video Representation
Given a videoV comprising of a sequence of small contiguous portions,
referred to as clips <c1,c2, ...., cn>, the goal is to construct a function
that learns an effective representation of video clips <r1,r2, ...., rn>.

Subproblem 2. Video Classification
Given a video clip representations <r1,r2, ...., rn>, the goal is to build
a classification function f which assigns annotations to each of the
ith clip ci from among the four labels namely violent, sexual, both or
safe.

We solve these subproblems in two phases namely video prepro-
cessing phase and video representation-cum-classification phase.

3.1 Video Preprocessing
Given a video V , it is converted into a compressed feature vector,

referred as video descriptor. The left half of Figure 2 explains the
various stages of preprocessing.

Splitting: Given that our goal is to perform fine-grained video

classification, we split the ith input video Vi into fixed, small sized

portions of videos referred to as video clips (ci
1
,ci
2
,... and so on)

each of say X seconds. During the evaluation of our approach, we

conduct experiments with different video clip durations X = 10, 5,

3 and 1 seconds to evaluate the performance of our approach with

varying degrees of granularity.

Sampling: Each of the jth video clip cij belonging to video Vi is

sampled at the rate of 6 frames per second (FPS), thereby generating

6*X frames for each video clip, where X is the clip size in seconds.

3
Pornographic Database is a dataset of pornographic videos, not necessarily targeted

for children



SAC ’19, April 8–12, 2019, Limassol, Cyprus Singh et. al.

Notationally, we represent these frames as f
i, j
1

, f
i, j
2

, .... f
i, j
6

, where

f
i, j
t means t th frame of clip cij belonging to video Vi .

The average frame rate of the videowas 23-24 FPS
4
, and sampling

roughly one-fourth of the frames gives us 6 FPS. Out of all the frame

rates that were tried, best results are produced by sampling at 6

FPS, as higher frame rates resulted in frame redundancy and high

computational times.

Resizing: Each of these frames are resized to 224× 224 and each

clip represented in form of 6*X frames with frame size 224× 224× 3

forms input of next stage.

Extracting Video Descriptor: As depicted in Figure 2, we em-

ploy VGG16 [33] CNN, pretrained on around 1.3 million ImageNet

data as the model learns to classify each image into one of the 1,000

classes. We use VGG16 to extract a feature vector from the frame,

which we refer as video descriptor. Use of VGG16 for describing

frames in a given video has been used in prior works [25, 35, 47].

Every 6*X frames of a clip, each of dimensions 224 × 224 × 3, is

passed as input to the VGG16 model. The frame goes across a stack

of convolutional layers, each containing a sequence of filters, of

size 3x3 and stride of 1 and max-pooling is used as spatial pooling.

In our approach, we discard the fully connected layers in final three

stages and instead perform a softmax at last stage from the VGG16

pipeline. The output from the last layer of convolutional network

which is of length 512 is considered as the final video descriptor

d
i, j
t of frame f

i, j
t which is used as input in the next phase. To sum

up, we obtain video descriptor of size 512 real values for each input

frame image of size 224 × 224 × 3.

3.2 Video Representation & Classification
In this second phase of the pipeline, we first train an LSTM autoen-

coder so that it can learn an effective video representation for our

video data. We use the autoencoder training as a semi-supervised
learning technique which allows the model to update the weights

based on unlabeled data. Subsequently, we use the trained encoder

module from the autoencoder, add a fully connected layer and use

it as an LSTM video classifier.

3.2.1 LSTM Autoencoder. Recurrent Neural Networks (RNN) are
efficient with temporal sequential information, which make them

ideal for our fine-grained, context-aware video analysis. One of the

variants of RNNs, Long Short-Term Memory (LSTM) networks [9]

are useful for learning long-term time dependencies. These LSTMs

are used to form an autoencoder, that consists of two components:

encoder and decoder. As shown in the right half of Figure 2, the

autoencoder is trained upon a sequence of input signals, and it

learns to recreate those input signals in the reverse sequence, with

some loss. LSTM units take input at each time step t and update

their cell state ct and hidden state ht . These internal states are

maintained by three gates inside the LSTM structure, which are

known as input gate nt , forget gate ft and output gate ot . Given a

time sequence of video descriptors asd
i, j
t of lengthT corresponding

to jthclip of ith video and previous hidden state ht−1 at next time

4
YouTube allows videos to be uploaded at 60 FPS also.
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Figure 3: LSTM Classifier – The encoder module from Fig-
ure 2 is connected to layer which is fully connected at each
time-step, containing four nodes, one for each class.

instance t − 1, the gate values are updated as:

nt = σ (Wdndt +Whnh(t−1) + bn ) (1)

ft = σ (Wdf dt +Whf h(t−1) + bf ) (2)

ot = σ (Wdodt +Whoh(t−1) + bo ) (3)

whereW represents the weight matrices and b are the bias vectors.

The cell state ct and the hidden state ht are finally updated at time

step t by:

ct = ftc(t−1) + nt tanh(Wdcdt +Whch(t−1) + bc ) (4)

ht = ot tanh(ct ) (5)

After preprocessing, the video descriptors derived from VGG16 are

used for input in this phase. Given that we sample video clips at 6

FPS, we obtain six video descriptors for each video clip which are

passed sequentially to six LSTM units to learn video representation

for the input video clip, which is referred to as the encoder of LSTM
autoencoder as depicted in Figure 2. The encoder comprises of

two layers of LSTM with each layer having 2,048 hidden units.

Given a sequence of input features, the encoder’s job is to learn the

representation of that sequence and output a context vector, or in our
case, we call it a video representative vector. The process is reversed
in the decoder part of LSTM autoencoder depicted in Figure 2. Like

the encoder, it is made up of two LSTM layers with 2,048 hidden

states in each layer. The aim of the decoder is to learn to create back

the input sequence using only the video representative vector as

the input. The LSTM autoencoder is fed with few hundred thousand

sequences of video descriptors corresponding to video clips to learn

an effective representation for each video clip. We train this model

using backpropagation and measure the loss between the input and

the reconstructed sequence using mean squared error.

3.2.2 LSTM Classifier. For classification, we take the encoder mod-

ule of the LSTM autoencoder and add a fully connected linear layer

at each time step of LSTM output, as illustrated in Figure 3. The en-

coder module, as described in Section 3.2.1, comprises of two layers

of LSTM with each layer having 2,048 hidden units. Given that we

want to classify each of the video clips into one of the four classes,

namely Safe, Violent, Sexual and Both, the final fully connected layer
contains four output nodes, one for each class. For an output vector
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Table 1: Details of Videos (Anime Episodes). Source:
https://www.anime-planet.com
Anime Series Relevant Tags #Episodes #Clips
Kill La Kill Swordplay 22 32,259

Shingeki No Kyojin Explicit Violence 15 21,693

Elfen Lied Sexual Abuse,

Nudity, Explicit

Violence

14 20,967

Berserk Sexual Abuse, Ex-

plicit Violence

25 34,916

x j of length C for C classes, we obtain log probabilities for each

class by using the log softmax activation function, denoted as:

loд_so f tmax(x j ) = log

(
exp(x j )∑c−1
c=0 exp(xc )

)
(6)

We measure the negative log-likelihood loss between the output

vector x j and one-hot vector for true label yj as:

loss(x j ,yj ) = −

C−1∑
c=0

yj loд_so f tmax(x j ) (7)

The negative log-likelihood loss together with the log softmax

activation function is also termed as cross entropy loss function.

While training the LSTM classifier, we start with theweights learned

by the encoder module during the LSTM autoencoder training and

fine-tune those weights via back propagation.

4 DATASET & GROUND TRUTH
There are numerous video datasets available for research. Google

has released Youtube-8M
5
video dataset that comprises of mil-

lions of video IDs along with their labels drawn from 4,716 classes.

While Youtube-8M has videos which are quite generic, there are

video datasets that target specific categories like action recogni-

tion (HMDB51 [17], Kinetics [15]), sports (UCF101 [34], Sports-1M

[13]) and captions (ActivityNet captions [16], MSR-VTT [45]). How-

ever, none of the existing datasets focuses on child unsafe content,

the closest we can find is the Pornographic Dataset [1] which has

long duration videos and represent videos which are not typically

watched by children. Therefore, there was a need to build a video

dataset that can act as a benchmark dataset for research in the area

of identifying child unsafe video content. Given that our focus is to

identify the content unsafe for kids, we decide to curate animated

videos containing relatively sparse and short snippets of violence

and nudity. To this end, we identify four anime series which are

Japanese animation cartoons containing explicit sexual and vio-

lent content. Anime videos make a good candidate dataset for our

experiments as they are animated videos containing interspersed

indecent content. Each anime series comprises of varying number

of episodes. Each episode is typically about 20 - 25 minutes of length.

Since we are focusing on fine-grained detection, the dataset has to

comprise of small duration video clips. To this end, we split each

episode into one-second duration clips resulting in 109,835 video

clips, taking into account all episodes in that series as depicted

in Table 1. To construct ground truth, a video annotation portal

5
https://research.google.com/youtube8m/index.html
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Figure 4: Precision and Recall increase as we reduce clip size
from 10, 5, 3 to 1 seconds in experiments with LSTM autoen-
coder and classifier, thereby indicating that LSTMs are able
to maintain context for shorter (fine-grained) duration clip
sizes.

was developed. Annotators were ten undergraduate and graduate

students belonging to the age group of 20 - 25 years, both male and

female, who were given detailed instructions about the annotation

task. Once they log in, they are provided with a list of videos to be

watched. While watching, they were expected to mark portions of

the video (thereby recording the start and end time at the back-end)

as belonging to either violent or sexual or both. Once annotators
finish watching a video, they were asked to explicitly mark the

video as watched so that unmarked portions could be treated as

the safe class. Labels on marked portions of the video were subse-

quently mapped on to each video clip of size one second. Of the

109,835 clips, 4,865 (4.4%) clips were annotated by a single annotator

and hence, were ignored. At least two annotators annotated all the

remaining video clips, and for more than 50% of these clips, there

were more than two annotators. Clips where annotator agreement

could not be achieved were not provided as input in our proposed

pipeline. 68,038 clips were labeled as belonging to safe class, 9,730
clips to both class while 20,368 clips and 6,834 clips belonged to vio-
lent and sexual classes, respectively. Cohen’s kappa inter-annotator
agreement turned out to be 0.63 which is considered substantial

agreement [18].

5 EXPERIMENTS AND RESULTS
In this section, we present approaches to evaluation of our method-

ology which uses VGG16 based video descriptors followed by LSTM

autoencoder and LSTM classifier. In particular, we design experi-

ments for the following:

• Quantitative assessment of our methodology by varying

video clip size, class distribution and, label information.

• Comparison of our methodology with other baselines for

video descriptors and classifiers.

All the experiments were implemented using PyTorch deep learning

framework and trained on a single NVIDIA Tesla K40c GPU. The

models are trained until the loss stops decreasing and the process

takes around 38-40 hours for LSTM autoencoder and around 28-

30 hours for LSTM classifier to converge. We perform an 80:20

training and testing data split in all the experiments. To facilitate

reproducibility, we plan to release dataset and code for all the

experiments upon acceptance of work.

https://www.anime-planet.com
https://research.google.com/youtube8m/index.html
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(c) ROC Curve for 3 sec clips.
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Figure 5: ROC Curves for imbalanced dataset of clips at X
= 10, 5, 3 and 1 seconds. The ROC values improve with the
decrease in clip size.

5.1 Quantitative Assessment
5.1.1 Effect of Clip Size. LSTM autoencoders are expected to keep

track of context across the frames within the same clip. In this

experiment, we evaluate the effect of change in clip size on the

performance of the LSTM classifier for fine-grained detection of

child unsafe content. We separately train LSTM autoencoder model

on different video clip sizes, each clip of X seconds, where X =
10, 5, 3, 1. Learned weights from each of these separately trained

encoder models are used as initial weights for the LSTM classifier

which is trained on annotated video clips. Figure 4 shows that with

the decrease in clip size, precision, recall and AUC values increase,

thereby, implying that LSTM autoencoder is an effective approach

for fine-grained detection of child unsafe video content. ROC curve

for each of the clip sizes, as depicted in Figure 5 also presents similar

trend as observed for precision and recall. The curves improve for

shorter duration of clips and we see significant improvement for

the sexual class. We also limit the minimum value of clip size,X = 1

because at 1 second, the clip contains six frames, and reducing the

clip size further would have meant that we have little to no context.
Also, annotating clips below 1 second would be quite hard.

5.1.2 Effect of Balanced Sampling. From section 4, it can be ob-

served that the class distribution, that is, number of clips belonging

to each of the four classes, is highly imbalanced. This is expected

because the occurrence of a scene depicting sexual or violent con-

tent would be less frequent in proportion to the safe content in
an episode, given the behavior of malicious uploader as alluded

to in section 1. However, this disproportion leads the classifier to

see more of the safe samples compared to the other class samples,

thus introducing a bias. Therefore, in this experiment, we study

the performance of the classifier in two scenarios, one in which

the classifier is trained with imbalanced class distribution and sec-

ond when it is trained with balanced class distribution. To balance

the class distribution, we undersample the clips belonging to the

abundant safe class, such that the number of clips belonging to

Table 2: Precision, Recall and AUC values for experiments
with balanced vs imbalanced class distribution keeping clip
size constant as 1 second. Recall values improve when we
move from imbalanced to balanced sampling. The Samples
column shows the number of testing samples fromour 80:20
train-test split.
Data set Class Samples Precision Recall AUC

Imbalanced

Safe 13607 0.85 0.93 0.88

Violent 4074 0.73 0.64 0.90

Sexual 1367 0.88 0.62 0.95

Both 1946 0.72 0.54 0.91

Balanced

Safe 7401 0.81 0.84 0.89

Violent 4074 0.75 0.71 0.90

Sexual 1367 0.73 0.76 0.95

Both 1945 0.70 0.64 0.92

Table 3: Precision, Recall and AUC values for experiment
with Safe vs Unsafe sample set, keeping clip size constant as
1 second. The recall value for Unsafe class grows more than
the average recall value of Unsafe samples in the Balanced
sample set.

Class Samples Precision Recall AUC
Safe 7402 0.81 0.80 0.88

Unsafe 7385 0.80 0.81 0.88

Table 4: Precision, Recall and AUC values for experiment
with the Unsafe sample set, keeping clip size constant as 1
second. The recall values improve for all the Unsafe classes.

Class Samples Precision Recall AUC
Violent 4074 0.86 0.91 0.94

Sexual 1367 0.89 0.85 0.97

Both 1945 0.80 0.72 0.92

the safe class is almost equal to the sum of clips belonging to the

violent, sexual and both class. As observed from Table 2, when we

move from imbalanced to balanced distribution, the recall for all

the unsafe classes (violent, sexual and both) improves. Given that

we target children, it is highly desirable to flag as many unsafe

portions of the video as possible.

5.1.3 Binary vs. Multi-class Classification. Our experiments in sub-

subsection 5.1.2 show that we achieve an increase in recall values

for the unsafe class by having a balanced sample set. Now, in this

experiment, we transform this balanced dataset into a binary class

dataset by labeling all samples from classes violent, sexual and both
as unsafe. We train a binary classifier exclusively with safe and un-
safe classes, which learns to distinguish between these two classes.

We see an increase in classification performance of unsafe class
up to 80% for precision and 81% for recall, as shown in Table 3.

Additionally, we take the violent, sexual and both samples and train

a secondary multi-class classifier that only learns to classify these

subsamples. This would be helpful in a typical deployment scenario

wherein we first flag clip as safe or unsafe and then subsequently,

provide specific labels to the unsafe clip. We observe precision and

recall values of 91%, 85% and 72% for violent, sexual and both, which
is a significant increase when compared to the results obtained

by simply balancing out the class distribution. We report these

numbers in Table 4.
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5.2 Comparison with Baselines
In this section, we compare the performance of LSTM autoencoder

and LSTM classifier with other baselines and report our observa-

tions in Table 5.

5.2.1 VGG16 based CNN Variants. To begin with, we determine the

performance of VGG16 based CNN component as the sole classifier

for our problem. To evaluate, we discard the final three layers

from the VGG16 pipeline and add a fully connected layer with four

output nodes instead. The weights of VGG16 pipeline pretrained

on ImageNet are used as initial weights and subsequently, fine-

tuned with our labeled dataset. We perform two variations in this

approach. In the first, we freeze the weights of all the layers, except

for the last one (refer this as VGG16+FC), and for the second model,

we let the weights in all the layers to be updated (refer this as

Fine-Tuned VGG16+FC). We find that the model with the fine-tuned

weights performs slightly poorly, compared to the VGG16 model

with weights pretrained on ImageNet. This is because we use our

child unsafe video dataset for fine-tuning which is a specific dataset

targeted for children but is relatively of smaller size as compared

to the ImageNet dataset. Therefore, for the rest of the experiments,

we use VGG16 based CNN pretrained on ImageNet.

5.2.2 Video Encoders and Classifier Variants. In these experiments,

we compare the effectiveness of our LSTM autoencoder based video

encoding with the baseline video encoding techniques and how

it affects the performance of the classifier. Previous experiments

done by Xu et al. [46] show that if the video encodings are dis-

tinctive enough, then even a shallow machine learning model can

be effective in classification. Therefore, we first directly run the

features obtained from the VGG16 CNN, without any video encod-

ing technique, through a Support Vector Machine (SVM) [4, 28]

classifier (refer this as VGG16+SVM) and get a recall of 71% for

safe and 63% for unsafe class. Next, we take the VGG16 features
and apply Fisher Vector (FC) encoding [31, 41] and feed it to SVM

classifier (refer this as VGG16+FV+SVM), which results in a 58% and

71% recall for the safe and unsafe class. We are emphasizing recall

values because, in the context of our problem of detecting child

unsafe video content, it is extremely crucial to detect as much un-

safe content sparsely located in a video as possible. Going forward,

we use Vector of Locally Aggregated Descriptors (VLAD) [11, 41]

as another popular video encoding technique, to represent video

features and run an SVM model over them. The recall values are

increased to 70% for safe but decrease to 62% for unsafe classes. Fi-
nally, to validate whether LSTM autoencoder has learned effective

representation for the video clips, we take the LSTM autoencoder

based encoded vector and run it through SVM. We get 79% recall

for safe and 74% for unsafe class. The increase in recall values of
both safe and unsafe video content by SVM classifier indicates that the
learned representation through LSTM autoencoder is more effective
than the other techniques. In fact, LSTM autoencoder based encoded

representations, when passed through a fully connected layer (FC)

achieve best recall rates of 80% and 81% for both safe and unsafe
class, thereby reinforcing that our approach of LSTM autoencoder

based encoding is a superior approach for fine grained detection of

child unsafe content.

Table 5: Precision, recall and AUC values for various base-
lines. Performance of only VGG16 based CNN pipeline is
measured. Next, video encodings using FV and VLAD are
compared with LSTM Autoencoder (LA) based video repre-
sentation.
Classifier Class Precision Recall AUC

VGG16 based CNN Variants

VGG16+FC Safe 0.55 0.76 0.75

Unsafe 0.79 0.69 0.87

Fine-tuned VGG16+FC Safe 0.58 0.7 0.75

Unsafe 0.75 0.69 0.81

Video Encoder and Classifier Variants

VGG16+SVM Safe 0.66 0.71 0.70

Unsafe 0.68 0.63 0.70

VGG16+FV+SVM Safe 0.67 0.58 0.72

Unsafe 0.63 0.71 0.72

VGG16+VLAD+SVM Safe 0.65 0.70 0.28

Unsafe 0.68 0.62 0.28

VGG16+LA+SVM Safe 0.76 0.79 0.86

Unsafe 0.78 0.75 0.86

VGG16+LA+FC Safe 0.81 0.80 0.88

Unsafe 0.80 0.81 0.88

6 CONCLUSION & FUTUREWORK
In this work, we propose LSTM autoencoder based video repre-

sentations as an effective approach for fine-grained detection of

child unsafe video content. Key takeaways are (1) LSTM autoen-

coder based video representation are the most suitable for cap-

turing context at a fine-grained level. (2) End-to-end training of

LSTM autoencoder-cum-classifier with almost equally balanced

safe and unsafe content results in improvement in recall rates. (3)

LSTM autoencoder-cum-classifier outperforms other baselines and

conventional approaches for video encodings (FV and VLAD). Our

work would help the video sharing platforms to prune child unsafe

video content automatically. Only the relevant portions of child

unsafe content can be blurred rather than taking down the entire

video. Our work would also help build parental control solutions in

the form of browser extensions which would display video safely

to children by weeding out child unsafe portions. Furthermore,

our methodology to flag child unsafe video content is entirely de-

pendent on video analysis and is independent of video meta-data

features like number of views, subscription count of the uploader,

which can easily be manipulated by malicious users [2, 24]. As a

follow-up, more specifically, the recent approaches which lever-

age spatio-temporal attention [6, 29] for video classification and

inception-v4 and inception-resnet models [37] needs to be further

explored .
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